Comments on the effect of the acidic strength of silica—alumina in the conversion of methanol to hydrocarbons

1986 ◽  
Vol 27 (2) ◽  
pp. 393-396
Author(s):  
W.G.B. Mandersloot ◽  
C.P. Nicolaides ◽  
M.S. Scurrell
1989 ◽  
Vol 54 (1) ◽  
pp. 139-157 ◽  
Author(s):  
P. Yarlagadda ◽  
C.R.F. Lund ◽  
E. Ruckenstein

Author(s):  
J.K. Lampert ◽  
G.S. Koermer ◽  
J.M. Macaoy ◽  
J.M. Chabala ◽  
R. Levi-Setti

We have used high spatial resolution imaging secondary ion mass spectrometry (SIMS) to differentiate mineralogical phases and to investigate chemical segregations in fluidized catalytic cracking (FCC) catalyst particles. The oil industry relies on heterogeneous catalysis using these catalysts to convert heavy hydrocarbon fractions into high quality gasoline and fuel oil components. Catalyst performance is strongly influenced by catalyst microstructure and composition, with different chemical reactions occurring at specific types of sites within the particle. The zeolitic portions of the particle, where the majority of the oil conversion occurs, can be clearly distinguished from the surrounding silica-alumina matrix in analytical SIMS images.The University of Chicago scanning ion microprobe (SIM) employed in this study has been described previously. For these analyses, the instrument was operated with a 40 keV, 10 pA Ga+ primary ion probe focused to a 30 nm FWHM spot. Elemental SIMS maps were obtained from 10×10 μm2 areas in times not exceeding 524s.


1987 ◽  
Vol 52 (7) ◽  
pp. 1701-1707 ◽  
Author(s):  
Miloslav Křivánek ◽  
Nguyen Thiet Dung ◽  
Pavel Jírů

The catalytic activity of Na, H-Y zeolite samples with a varying Si/Al ratio (2·5 to 20) in the transformation of methanol was determined. The amounts of formed individual aliphatic hydrocarbons as function of reaction time were correlated with the amount of Bronsted and Lewis centres on the catalysts. The effect of coke formation on the over-all course of the reaction has been demonstrated.


2016 ◽  
Vol 95 (6) ◽  
pp. 480-486 ◽  
Author(s):  
Naoki TOYAMA ◽  
Shinobu OHKI ◽  
Masataka TANSHO ◽  
Tadashi SHIMIZU ◽  
Tetsuo UMEGAKI ◽  
...  

Author(s):  
Lizhen Chen ◽  
Wenyang Xie ◽  
Yao Luo ◽  
Xiaolan Ding ◽  
Bing Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document