Sensitive silica‐alumina modified capacitive non‐faradaic glucose sensor for gestational diabetes

Author(s):  
Lizhen Chen ◽  
Wenyang Xie ◽  
Yao Luo ◽  
Xiaolan Ding ◽  
Bing Fu ◽  
...  
Author(s):  
J.K. Lampert ◽  
G.S. Koermer ◽  
J.M. Macaoy ◽  
J.M. Chabala ◽  
R. Levi-Setti

We have used high spatial resolution imaging secondary ion mass spectrometry (SIMS) to differentiate mineralogical phases and to investigate chemical segregations in fluidized catalytic cracking (FCC) catalyst particles. The oil industry relies on heterogeneous catalysis using these catalysts to convert heavy hydrocarbon fractions into high quality gasoline and fuel oil components. Catalyst performance is strongly influenced by catalyst microstructure and composition, with different chemical reactions occurring at specific types of sites within the particle. The zeolitic portions of the particle, where the majority of the oil conversion occurs, can be clearly distinguished from the surrounding silica-alumina matrix in analytical SIMS images.The University of Chicago scanning ion microprobe (SIM) employed in this study has been described previously. For these analyses, the instrument was operated with a 40 keV, 10 pA Ga+ primary ion probe focused to a 30 nm FWHM spot. Elemental SIMS maps were obtained from 10×10 μm2 areas in times not exceeding 524s.


Author(s):  
Lorna K. Mayo ◽  
Kenneth C. Moore ◽  
Mark A. Arnold

An implantable artificial endocrine pancreas consisting of a glucose sensor and a closed-loop insulin delivery system could potentially replace the need for glucose self-monitoring and regulation among insulin dependent diabetics. Achieving such a break through largely depends on the development of an appropriate, biocompatible membrane for the sensor. Biocompatibility is crucial since changes in the glucose sensors membrane resulting from attack by orinter action with living tissues can interfere with sensor reliability and accuracy. If such interactions can be understood, however, compensations can be made for their effects. Current polymer technology offers several possible membranes that meet the unique chemical dynamics required of a glucose sensor. Two of the most promising polymer membranes are polytetrafluoroethylene (PTFE) and silicone (Si). Low-voltage scanning electron microscopy, which is an excellent technique for characterizing a variety of polymeric and non-conducting materials, 27 was applied to the examination of experimental sensor membranes.


2006 ◽  
Vol 12 ◽  
pp. 7
Author(s):  
Lois G. Jovanovic ◽  
Howard Zisser ◽  
Timothy Bailey ◽  
Roy Kaplan ◽  
Satish Garg
Keyword(s):  

2016 ◽  
Vol 22 ◽  
pp. 233-234
Author(s):  
Md Abdullah Mamun ◽  
Subrina Jesmin ◽  
Md. Arifur Rahman ◽  
Md Majedul Islam ◽  
Farzana Sohael ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document