fluidized catalytic cracking
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Mythily Mani ◽  
Manamalli Deivasigamani ◽  
Rames Chandra Panda ◽  
Raja Nandhini Ramasami

Abstract As gasoline demand increases, the efficiency of operation of Fluidized Catalytic Cracking Unit (FCCU) becomes paramount importance. In this paper, a dynamic model for FCCU is simulated and integrated with yield model in order to estimate the yield of products namely gasoline, light gases and coke. Conventional PI controllers are designed for the control of reactor and regenerator temperature. Since, the complete reaction occurs in a very short duration, the controllers are tuned so as to achieve shorter settling time and minimum overshot. Further in order to increase the yield, optimization of FCCU using Generalized Predictive Controller (GPC) at supervisory level is attempted. Through optimization of objective function, the GPC will provide optimized set point for the PI controller in order to maintain maximum gasoline yield.


Author(s):  
K. Harish Kiri Sivakumar ◽  
Kannan Aravamudan

Abstract The importance of the axial catalyst holdup on the accurate prediction of reaction yields from Fluidized Catalytic Cracking Unit (FCCU) risers was explored in this study. The Kunii and Levenspiel model was incorporated in the FCCU riser simulations for predicting the solid holdup. Two approaches were compared – the popular one assuming Constant Holdup (CH) and the other incorporating Variable Holdup (VH) in the reaction kinetics models. Simulation predictions using these two approaches were fitted to the yield profiles obtained from industrial plant data reported in the literature. The kinetic parameter estimates, including frequency factors and coking parameters obtained from these two approaches, were quite similar, indicating insensitivity to catalyst holdup. However, the kinetic model incorporating VH expression could predict the plant conversion and yield to within ±10% error throughout the riser. In contrast, the CH model led to predictions that were rather erroneous (>±25%) at the riser bottom as the catalyst particle acceleration zone was neglected. Temperature, gas density, catalyst particle, and gas phase velocity profiles obtained from the VH approach were considerably different from those obtained using the CH approach. The VH approach showed that the slip factor, especially, was quite distinct as it reached a peak value before decaying exponentially. On the other hand, the CH model showed a monotonic increase in slip factor along the riser.


Author(s):  
Jonas Otten-Weinschenker ◽  
Martin Mönnigmann

AbstractWe apply a robust steady state optimization method for stiff delay differential equations to the economic optimization of a fluidized catalytic cracking unit. Stiff systems of differential equations appear in this case due to the different time scales in the gas and fluid phase. Delays result from the catalyst hold-ups in the standpipes connecting riser and regenerator. We show that the proposed robust optimization method can cope with stiffness and delays. Moreover, the proposed method is capable of simultaneously optimizing the process parameters and tuning controller parameters.


Sign in / Sign up

Export Citation Format

Share Document