Chapter 14 Introduction to acid catalysis with zeolites in hydrocarbon reactions

Author(s):  
J.A. Martens ◽  
P.A. Jacobs
1999 ◽  
Author(s):  
B. Potapkin ◽  
A. Babaritski ◽  
M. Deminskiy ◽  
V. Jivotov ◽  
R. Smirnov ◽  
...  

2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


Synlett ◽  
2021 ◽  
Author(s):  
Pingfan Li

AbstractThis Account discusses several new reaction methods developed in our group that utilize sulfur-mediated reactions through sulfonium salts and ylides, highlighting the interplay of rational design and serendipity. Our initial goal was to convert aliphatic C–H bonds into C–C bonds site-selectively, and without the use of transition-metal catalysts. While a proof-of-concept has been achieved, this target is far from being ideally realized. The unexpected discovery of an anti-Markovnikov rearrangement and subsequent studies on difunctionalization of alkynes were much more straightforward, and eventually led to the new possibility of asymmetric N–H insertion of sulfonium ylides through Brønsted acid catalysis.1 Introduction2 Allylic/Propargylic C–H Functionalization3 Anti-Markovnikov Rearrangement4 Difunctionalization of Alkynes5 Asymmetric N–H Insertion of Sulfonium Ylides6 Conclusion


Sign in / Sign up

Export Citation Format

Share Document