Chapter 18 Zeolites and related materials in organic syntheses. Brönsted and Lewis Catalysis

Author(s):  
W.F. Hölderich ◽  
H. van Bekkum
Keyword(s):  
1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1984 ◽  
Vol 49 (5) ◽  
pp. 1247-1261 ◽  
Author(s):  
Jaroslav Koča ◽  
Milan Kratochvíl ◽  
Milan Kunz ◽  
Vladimír Kvasnička

The algebraic formalism for the description of valence states of atoms and their interconversions is elaborated. It offers a possibility to construct and trace mechanistic paths of chemical reactions, the problem of which is of great importance in computer-assisted organic syntheses. Its systematic application gives exhaustive lists of possible mechanistic paths, and furthermore, very efficient tool to classify chemical reactions and look for their common features.


1985 ◽  
Vol 32 (2) ◽  
pp. 211-218 ◽  
Author(s):  
G. Cavinato ◽  
L. Toniolo ◽  
C. Botteghi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document