On the Littlewood-Richardson Rule in Terms of Lattice Path Combinatorics

Author(s):  
Toshihiro Watanabe
Keyword(s):  
10.37236/534 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
A. M. Hamel ◽  
R. C. King

A recent paper of the present authors provides extensions to two classical determinantal results of Bressoud and Wei, and of Koike. The proofs in that paper were algebraic. The present paper contains combinatorial lattice path proofs.


10.37236/8788 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Quang-Nhat Le ◽  
Sinai Robins ◽  
Christophe Vignat ◽  
Tanay Wakhare

Following the work of Cano and Díaz, we consider a continuous analog of lattice path enumeration. This process allows us to define a continuous version of many discrete objects that count certain types of lattice paths. As an example of this process, we define continuous versions of binomial and multinomial coefficients, and describe some identities and partial differential equations that they satisfy. Finally, as an important byproduct of these continuous analogs, we illustrate a general method to recover discrete combinatorial quantities from their continuous analogs, via an application of the Khovanski-Puklikov discretizing Todd operators.  


2002 ◽  
Vol 39 (3-4) ◽  
pp. 309-332 ◽  
Author(s):  
K. Sen ◽  
Manju L. Agarwal ◽  
S. Chakraborty

In this paper, joint distributions of number of success runs of length k and number of failure runs of length k' are obtained by using combinatorial techniques including lattice path approach under Pólya-Eggenberger model. Some of its particular cases, for different values of the parameters, are derived. Sooner and later waiting time problems and joint distributions of number of success runs of various types until first occurrence of consecutive success runs of specified length under the model are obtained. The sooner and later waiting time problems for Bernoulli trials (see Ebneshahrashoob and Sobel [3]) and joint distributions of the type discussed by Uchiada and Aki [11] are shown as particular cases. Assuming Ln and Sn to be the lengths of longest and smallest success runs, respectively, in a sample of size n drawn by Pólya-Eggenberger sampling scheme, the joint distributions of Ln and  Sn as well as distribution of M=max(Ln,Fn)n, where Fn is the length of longest failure run, are also  obtained.


2009 ◽  
Vol 106 (28) ◽  
pp. 11502-11505 ◽  
Author(s):  
Manuel Kauers ◽  
Christoph Koutschan ◽  
Doron Zeilberger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document