lattice path enumeration
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Kengo Hamada ◽  
Ken-ichi Tanaka

Abstract This paper considers sports matches in which two teams compete to score more points within a set amount of time (e.g. football, ice hockey). We focus on the order in which the competing teams score during the match (order of scoring). This type of order of scoring problem has not been addressed previously, and doing so here gives new insights into sports matches. For example, our analysis can deal with a situation that spectators find matches that involve comebacks particularly exciting. To describe such problems mathematically, we formulate the probabilities of (i) the favourite team leading throughout the match and (ii) the favourite team falling behind the opposing team but then making a comeback. These probabilities are derived using an independent Poisson model and lattice path enumeration, the latter of which involves the well-known ballot theorem. The independence assumption allows lattice path enumeration to be applied directly to the Poisson model and various scoring patterns to be addressed. We confirm that the values obtained from the proposed models agree well with actual sports data from football, futsal and ice hockey.



10.37236/8788 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Quang-Nhat Le ◽  
Sinai Robins ◽  
Christophe Vignat ◽  
Tanay Wakhare

Following the work of Cano and Díaz, we consider a continuous analog of lattice path enumeration. This process allows us to define a continuous version of many discrete objects that count certain types of lattice paths. As an example of this process, we define continuous versions of binomial and multinomial coefficients, and describe some identities and partial differential equations that they satisfy. Finally, as an important byproduct of these continuous analogs, we illustrate a general method to recover discrete combinatorial quantities from their continuous analogs, via an application of the Khovanski-Puklikov discretizing Todd operators.  





Algorithmica ◽  
2015 ◽  
Vol 75 (4) ◽  
pp. 782-811 ◽  
Author(s):  
Stephen Melczer ◽  
Marni Mishna




2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei

International audience We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes. Nous introduisons le polynôme torique court associé à un ensemble ordonné Eulérien. Ce polynôme contient la même information que le couple de polynômes toriques de Stanley, mais il permet des manipulations algébriques différentes. La récurrence entrecroisée de Stanley peut être remplacée par une seule récurrence dans laquelle le degré des termes écartés est indépendant du rang. La variante torique courte de la formule de Bayer et Ehrenborg, qui exprime le vecteur torique d'un ensemble ordonné Eulérien en termes de son cd-index, est énoncée sous une forme qui ne dépend pas du rang et qui peut être démontrée en utilisant une énumération des chemins pondérés et le principe de réflexion. Nous utilisons nos techniques pour dériver une formule exprimant le vecteur h-torique d'un ensemble ordonné Eulérien dont le dual est simplicial, en termes de son f-vecteur. Cette formule implique la formule de Gessel pour le vecteur h-torique d'un cube, et elle peut être utilisée pour démontrer que la positivité du vecteur h-torique d'un polytope simple est une conséquence du Théorème de la Borne Inférieure Généralisé appliqué aux polytopes simpliciaux.



2010 ◽  
Vol 140 (8) ◽  
pp. 2237-2254 ◽  
Author(s):  
Katherine Humphreys


1992 ◽  
Vol 13 (2) ◽  
pp. 216-251 ◽  
Author(s):  
Jay R Goldman ◽  
Thomas Sundquist


Sign in / Sign up

Export Citation Format

Share Document