Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors

2002 ◽  
Vol 91 (1-3) ◽  
pp. 283-293 ◽  
Author(s):  
Deepanjan Majumdar ◽  
Himanshu Pathak ◽  
Sushil Kumar ◽  
M.C. Jain
2010 ◽  
Vol 136 (3-4) ◽  
pp. 247-253 ◽  
Author(s):  
A. Bhatia ◽  
S. Sasmal ◽  
N. Jain ◽  
H. Pathak ◽  
R. Kumar ◽  
...  

1997 ◽  
Vol 77 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. F. MacKenzie ◽  
M. X. Fan ◽  
F. Cadrin

Nitrous oxide (N2O) produced from agricultural activities represents a threat to the ozone layer and economic losses. Rates and magnitudes of N2O emissions of cropping systems must be determined to establish corrective management procedures. In 1994, N2O emissions were determined with corn (ZeaMays L.) and corn-legume rotations. Continuous corn was studied on four soils, two from a long-term experiment, a Ste. Rosalie heavy clay (Humic Gleysol) and a Chicot sandy loam (Grey-Brown Podzol), at 0, 170, 285 or 400 kg N ha−1, and two from a corn rotation study, a Ste. Rosalie clay (Humic Gleysol) and an Ormstown silty clay loam (Humic Gleysol). Treatments included no-till (NT) and conventional tillage (CT), monoculture corn (CCCC), monoculture soybean; corn-soybean; and soybean-corn-alfalfa phased rotations. Nitrogen rates of 0, 90, or 180 kg N ha−1 for corn and 0, 20, or 40 kg N ha−1 for continuous soybean were used, and soybean/alfalfa following corn no fertilizer N. Rates of N2O emission were measured from closed chambers through the growing season. About 0.99 to 2.1% of N added was lost as N2O. Nitrous oxide emission increased with increased soil water content, NO3 concentration and fertilizer N rates. Emission of N2O was higher with NT than with CT, and with corn than with soybean or alfalfa. A corn system using CT, legumes in rotation and moderate fertilizer N would reduce N2O emission. Key words: Greenhouse gases, soil nitrate, tillage methods, water-filled pore space, denitrification, rotations


2014 ◽  
Vol 11 (9) ◽  
pp. 13571-13603 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT + DCD), and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01kg N2O-N ha−1 by application of DCD, NBPT and NBPT + DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


2021 ◽  
Vol 97 ◽  
pp. 104289
Author(s):  
Wei Li ◽  
Yunying Wang ◽  
Qingmin Xu ◽  
Guangmin Cao ◽  
Xiaowei Guo ◽  
...  

2000 ◽  
Vol 81 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Deepanjan Majumdar ◽  
Sushil Kumar ◽  
H Pathak ◽  
M.C Jain ◽  
Upendra Kumar

2015 ◽  
Vol 12 (3) ◽  
pp. 803-815 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT plus DCD) and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 kg N2O-N ha−1 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01 kg N2O-N ha−1 by application of DCD, NBPT and NBPT plus DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01 kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document