nitrification inhibitor
Recently Published Documents


TOTAL DOCUMENTS

527
(FIVE YEARS 131)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Changqing Guo ◽  
Hongmei Wang ◽  
Dianbo Zou ◽  
Yue Wang ◽  
Xiaori Han

Abstract Purpose Nitrification inhibitor plays an important regulatory role in inhibiting the nitrification of ammonium in soils. However, most of nitrification inhibitors lack the sustainable effects in suppressing the nitrification of ammonium. In this study, a novel DMS nitrification inhibitor was prepared and tested to explore its lasting effect of nitrification suppression in black soil. Materials and methods Both culture experiments and field trial were performed in black soils. Three kinds of nitrification inhibitors (NIs), dicyandiamide (DCD) with low bioactivity, 3,4-dimethylpyrazole phosphate (DMPP) with high bioactivity, and a novel 3,4-dimethylpyrazole sulfate zinc (DMS) with long half-life, were applied into soils, respectively, and the abundance changes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated; then, the accumulation changes of inorganic nitrogen, nitrogen use efficiency, and crop yields were furtherly evaluated. Results and discussions A novel DMS nitrification inhibitor with high activity and long half-life maintained a persistent effect of nitrification suppression, and remarkably increased the accumulation of ammonium nitrogen in soil, thus improving nitrogen use efficiency and crop yields. This study implies that lowering the nitrogen loss of nitrification-triggered in soil is of great importance for improving nitrogen use efficiency. Conclusions This study provided an insight into the sustainable nitrification suppression of a novel DMS nitrification inhibitor under excessive application of nitrogen fertilizer in black soils. Compared with improving the activity, reasonably prolonging the validity of nitrification inhibitors in soil is a more important strategy increasing the sustainable effects of nitrification inhibition, and the survival period of nitrification inhibitors in soil should be a crucial factor improving nitrogen use efficiency.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2426
Author(s):  
Dalma Rácz ◽  
Lóránt Szőke ◽  
Brigitta Tóth ◽  
Béla Kovács ◽  
Éva Horváth ◽  
...  

Nutrient stress has been known as the main limiting factor for maize growth and yield. Nitrapyrin, as a nitrification inhibitor—which reduces nitrogen loss—and foliar fertilizer treatments have been successfully used to enhance the efficiency of nutrient utilization, however, the impacts of these two technologies on physiological development, enzymatic responses, and productivity of maize are poorly studied. In this paper, the concentration of each stress indicator, such as contents of proline, malondialdehyde (MDA), relative chlorophyll, photosynthetic pigments, and the activity of superoxide dismutase (SOD) were measured in maize leaf tissues. In addition, biomass growth, as well as quantitative and qualitative parameters of yield production were examined. Results confirm the enhancing impact of nitrapyrin on the nitrogen use of maize. Furthermore, lower activity of proline, MDA, SOD, as well as higher photosynthetic activity were shown in maize with a more favorable nutrient supply due to nitrapyrin and foliar fertilizer treatments. The obtained findings draw attention to the future practical relevance of these technologies that can be implemented to enhance the physiological development and productivity of maize. However, this paper also highlights the importance of irrigation, as nutrient uptake from soil by the crops decreases during periods of drought.


2021 ◽  
Vol 3 ◽  
Author(s):  
Lynea Murphy ◽  
Matthew J. LeBaron ◽  
Kamin Johnson ◽  
Reza J. Rasoulpour ◽  
Xiujuan Wang ◽  
...  

Nitrapyrin, a nitrification inhibitor, produces liver tumors in B6C3F1 mice. In a 2-year oncogenicity study, increased incidence of mice with hepatocellular tumors was observed following exposure to 125 (females only) or 250 mg/kg/day (males and females) nitrapyrin in the diet. Previous data was generated in male mice to support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor (NR) activation, increased hepatocellular proliferation, and subsequent hepatocellular foci and tumor formation. Uncertainty as to the relevance of this MoA for females remained given the increased sensitivity to tumor formation in female mice. A targeted MoA study was conducted to evaluate CAR activation and hepatic responses in female mice treated with the female carcinogenic dose of nitrapyrin for 4 days. Nitrapyrin induced a treatment-related increase in hepatocellular hypertrophy and hepatocellular proliferation. Nitrapyrin also induced a dose-related increase in the Cyp2b10/CAR-associated transcript and liver weights. Nitrapyrin-induced liver weights and Cyp2b10 gene expression for both males and females were compared to data generated from three other established CAR activators; methyl isobutyl ketone, phenobarbital, and sulfoxaflor. The response observed in female mice following exposure to nitrapyrin was within range of the degree of change observed in mice following exposure to tumorigenic doses of other CAR activators. Consistent with the liver MoA in male mice, these data support a CAR-mediated mode of action for nitrapyrin-induced liver tumors in female mice, with the understanding that a focused approach minimizing animal use can bridge male and female datasets when sex-specific carcinogenic differences are observed.


Author(s):  
Eleftheria Bachtsevani ◽  
Christina V. Papazlatani ◽  
Constantina Rousidou ◽  
Eleni Lampronikou ◽  
Urania Menkissoglu-Spiroudi ◽  
...  

2021 ◽  
Author(s):  
Ezio Nalin de Paulo ◽  
Fernando Shintate Galindo ◽  
Flávio Henrique Silveira Rabêlo ◽  
Joaquim José Frazão ◽  
José Lavres

Sign in / Sign up

Export Citation Format

Share Document