Smoothed bootstrap confidence intervals with discrete data

1997 ◽  
Vol 26 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Rudy Guerra ◽  
Alan M. Polansky ◽  
William R. Schucany
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1212
Author(s):  
Xin Gao ◽  
Frank Konietschke ◽  
Qiong Li

Simultaneous confidence intervals are commonly used in joint inference of multiple parameters. When the underlying joint distribution of the estimates is unknown, nonparametric methods can be applied to provide distribution-free simultaneous confidence intervals. In this note, we propose new one-sided and two-sided nonparametric simultaneous confidence intervals based on the percentile bootstrap approach. The admissibility of the proposed intervals is established. The numerical results demonstrate that the proposed confidence intervals maintain the correct coverage probability for both normal and non-normal distributions. For smoothed bootstrap estimates, we extend Efron’s (2014) nonparametric delta method to construct nonparametric simultaneous confidence intervals. The methods are applied to construct simultaneous confidence intervals for LASSO regression estimates.


2021 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
Rebeca Peláez Suárez ◽  
Ricardo Cao Abad ◽  
Juan M. Vilar Fernández

This work proposes a resampling technique to approximate the smoothing parameter of Beran’s estimator. It is based on resampling by the smoothed bootstrap and minimising the bootstrap approximation of the mean integrated squared error to find the bootstrap bandwidth. The behaviour of this method has been tested by simulation on several models. Bootstrap confidence intervals are also addressed in this research and their performance is analysed in the simulation study.


2019 ◽  
Author(s):  
Amanda Kay Montoya ◽  
Andrew F. Hayes

Researchers interested in testing mediation often use designs where participants are measured on a dependent variable Y and a mediator M in both of two different circumstances. The dominant approach to assessing mediation in such a design, proposed by Judd, Kenny, and McClelland (2001), relies on a series of hypothesis tests about components of the mediation model and is not based on an estimate of or formal inference about the indirect effect. In this paper we recast Judd et al.’s approach in the path-analytic framework that is now commonly used in between-participant mediation analysis. By so doing, it is apparent how to estimate the indirect effect of a within-participant manipulation on some outcome through a mediator as the product of paths of influence. This path analytic approach eliminates the need for discrete hypothesis tests about components of the model to support a claim of mediation, as Judd et al’s method requires, because it relies only on an inference about the product of paths— the indirect effect. We generalize methods of inference for the indirect effect widely used in between-participant designs to this within-participant version of mediation analysis, including bootstrap confidence intervals and Monte Carlo confidence intervals. Using this path analytic approach, we extend the method to models with multiple mediators operating in parallel and serially and discuss the comparison of indirect effects in these more complex models. We offer macros and code for SPSS, SAS, and Mplus that conduct these analyses.


2017 ◽  
Vol 42 (11) ◽  
pp. 4565-4573 ◽  
Author(s):  
Muhammad Kashif ◽  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Ali Hussein AL-Marshadi ◽  
Chi-Hyuck Jun

Sign in / Sign up

Export Citation Format

Share Document