GABAc receptor mediated modulation of glutamatergic synaptic transmission to amacrine cells in the mouse retina

2000 ◽  
Vol 38 ◽  
pp. S32
Author(s):  
K Matsui
Neuroreport ◽  
2019 ◽  
Vol 30 (18) ◽  
pp. 1316-1322 ◽  
Author(s):  
Víctor Cervantes-Ramírez ◽  
Martha Canto-Bustos ◽  
Diana Aguilar-Magaña ◽  
Elsy Arlene Pérez-Padilla ◽  
José Luis Góngora-Alfaro ◽  
...  

2000 ◽  
Vol 17 (2) ◽  
pp. 273-281 ◽  
Author(s):  
M. KANEDA ◽  
B. ANDRÁSFALVY ◽  
A. KANEKO

The localization of endogenous Zn2+ in the mouse retina was examined histochemically and the inhibitory action of Zn2+ on GABA-induced responses was studied in bipolar cells isolated from the mouse retina. Accumulation of endogenous Zn2+ was detected in photoreceptors, bipolar, and/or amacrine cells by either the bromopyridylazo-diethylaminophenol method or the dithizone method. Under whole-cell recording conditions, GABA induced a Cl− current in isolated bipolar cells. The current consisted of two components. The first component was inhibited completely by application of 100 μM bicuculline, suggesting that this is a GABAA-receptor mediated current. The second component was inhibited completely by 100 μM 3-aminopropyl-(methyl)-phosphinic acid, suggesting that this is a GABAC-receptor mediated current. GABAC receptors were present at a higher density on the axon terminal than on dendrites. Zn2+ inhibited both GABAA and GABAC receptors. GABAC receptors were more susceptible to Zn2+; the IC50 for the GABAA receptor was 67.4 μM and that for the GABAC receptor was 1.9 μM. These results suggest that Zn2+ modulates the inhibitory interaction between amacrine and bipolar cells, particularly that mediated by the GABAC receptor.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Daniela Accorsi‐Mendonca ◽  
Leni GH Bonagamba ◽  
Ricardo Mauricio Leao ◽  
Benedito H Machado

Sign in / Sign up

Export Citation Format

Share Document