Optical imaging of neural activity of auditory cortex in response to sounds containing a silent period

2000 ◽  
Vol 38 ◽  
pp. S156
Author(s):  
J Horikawa
2006 ◽  
Vol 120 (5) ◽  
pp. 3122-3122
Author(s):  
Junsei Horikawa ◽  
Takashi Hatta ◽  
Shunji Sugimoto ◽  
Yutaka Hosokawa ◽  
Michinori Kubota

1997 ◽  
Vol 117 (sup532) ◽  
pp. 83-88 ◽  
Author(s):  
Ikuo Taniguchi ◽  
Junsei Horikawa ◽  
Yutaka Hosokawa ◽  
Masahiro Nasu

2021 ◽  
Author(s):  
Anton Filipchuk ◽  
Alain Destexhe ◽  
Brice Bathellier

AbstractNeural activity in sensory cortex combines stimulus responses and ongoing activity, but it remains unclear whether they reflect the same underlying dynamics or separate processes. Here we show that during wakefulness, the neuronal assemblies evoked by sounds in the auditory cortex and thalamus are specific to the stimulus and distinct from the assemblies observed in ongoing activity. In contrast, during anesthesia, evoked assemblies are indistinguishable from ongoing assemblies in cortex, while they remain distinct in the thalamus. A strong remapping of sensory responses accompanies this dynamical state change produced by anesthesia. Together, these results show that the awake cortex engages dedicated neuronal assemblies in response to sensory inputs, which we suggest is a network correlate of sensory perception.One-Sentence SummarySensory responses in the awake cortex engage specific neuronal assemblies that disappear under anesthesia.


2019 ◽  
Author(s):  
Jesyin Lai ◽  
Stephen V. David

ABSTRACTChronic vagus nerve stimulation (VNS) can facilitate learning of sensory and motor behaviors. VNS is believed to trigger release of neuromodulators, including norepinephrine and acetylcholine, which can mediate cortical plasticity associated with learning. Most previous work has studied effects of VNS over many days, and less is known about how acute VNS influences neural coding and behavior over the shorter term. To explore this question, we measured effects of VNS on learning of an auditory discrimination over 1-2 days. Ferrets implanted with cuff electrodes on the vagus nerve were trained by classical conditioning on a tone frequency-reward association. One tone was associated with reward while another tone, was not. The frequencies and reward associations of the tones were changed every two days, requiring learning of a new relationship. When the tones (both rewarded and non-rewarded) were paired with VNS, rates of learning increased on the first day following a change in reward association. To examine VNS effects on auditory coding, we recorded single- and multi-unit neural activity in primary auditory cortex (A1) of passively listening animals following brief periods of VNS (20 trials/session) paired with tones. Because afferent VNS induces changes in pupil size associated with fluctuations in neuromodulation, we also measured pupil during recordings. After pairing VNS with a neuron’s best-frequency (BF) tone, responses in a subpopulation of neurons were reduced. Pairing with an off-BF tone or performing VNS during the inter-trial interval had no effect on responses. We separated the change in A1 activity into two components, one that could be predicted by fluctuations in pupil and one that persisted after VNS and was not accounted for by pupil. The BF-specific reduction in neural responses remained, even after regressing out changes that could be explained by pupil. In addition, the size of VNS-mediated changes in pupil predicted the magnitude of persistent changes in the neural response. This interaction suggests that changes in neuromodulation associated with arousal gate the long-term effects of VNS on neural activity. Taken together, these results support a role for VNS in auditory learning and help establish VNS as a tool to facilitate neural plasticity.


2011 ◽  
Vol 105 (2) ◽  
pp. 964-980 ◽  
Author(s):  
Andrew Miri ◽  
Kayvon Daie ◽  
Rebecca D. Burdine ◽  
Emre Aksay ◽  
David W. Tank

The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals.


2007 ◽  
Vol 25 (1) ◽  
pp. 298-306 ◽  
Author(s):  
Jeffrey J. Sable ◽  
Kathy A. Low ◽  
Christopher J. Whalen ◽  
Edward L. Maclin ◽  
Monica Fabiani ◽  
...  

2009 ◽  
Vol 65 ◽  
pp. S66
Author(s):  
Tazu Aoki ◽  
Masakazu Agetsuma ◽  
Hidenori Aizawa ◽  
Akiko Arata ◽  
Shin-ichi Higashijima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document