scholarly journals Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10Be from Blake Outer Ridge marine sediments

Author(s):  
L.R McHargue ◽  
D Donahue ◽  
P.E Damon ◽  
C.P Sonett ◽  
D Biddulph ◽  
...  
Pramana ◽  
2021 ◽  
Vol 95 (2) ◽  
Author(s):  
A Sen ◽  
S Chatterjee ◽  
S Roy ◽  
R Biswas ◽  
S Das ◽  
...  
Keyword(s):  

1957 ◽  
Vol 6 (3) ◽  
pp. 748-750 ◽  
Author(s):  
C. J. Waddington
Keyword(s):  

2000 ◽  
Vol 105 (A1) ◽  
pp. 9-17 ◽  
Author(s):  
Yuri I. Stozhkov ◽  
Peter E. Pokrevsky ◽  
Victor P. Okhlopkov

2008 ◽  
Author(s):  
S. Casanova ◽  
S. Gabici ◽  
F. A. Aharonian ◽  
K. Torii ◽  
Y. Fukui ◽  
...  

Author(s):  
L. J. Plug ◽  
J. C. Gosse ◽  
J. J. McIntosh ◽  
R. Bigley

2017 ◽  
Author(s):  
A.L Melott ◽  
B.C. Thomas ◽  
M. Kachelrieß ◽  
D.V. Semikoz ◽  
A.C. Overholt

ABSTRACTRecent 60Fe results have suggested that the estimated distances of supernovae in the last few million years should be reduced from ∼100 pc to ∼50 pc. Two events or series of events are suggested, one about 2.7 million years to 1.7 million years ago, and another may at 6.5 to 8.7 million years ago. We ask what effects such supernovae are expected to have on the terrestrial atmosphere and biota. Assuming that the Local Bubble was formed before the event being considered, and that the supernova and the Earth were both inside a weak, disordered magnetic field at that time, TeV-PeV cosmic rays at Earth will increase by a factor of a few hundred. Tropospheric ionization will increase proportionately, and the overall muon radiation load on terrestrial organisms will increase by a factor of ∼150. All return to pre-burst levels within 10kyr. In the case of an ordered magnetic field, effects depend strongly on the field orientation. The upper bound in this case is with a largely coherent field aligned along the line of sight to the supernova, in which case TeV-PeV cosmic ray flux increases are ∼104; in the case of a transverse field they are below current levels. We suggest a substantial increase in the extended effects of supernovae on Earth and in the “lethal distance” estimate; more work is needed. This paper is an explicit followup to Thomas et al. (2016). We also here provide more detail on the computational procedures used in both works.


2021 ◽  
Vol 9 ◽  
Author(s):  
I. D. Streletskaya ◽  
A. A. Pismeniuk ◽  
A. A. Vasiliev ◽  
E. A. Gusev ◽  
G. E. Oblogov ◽  
...  

The Kara Sea coast and part of the shelf are characterized by wide presence of the ice-rich permafrost sequences containing massive tabular ground ice (MTGI) and ice wedges (IW). The investigations of distribution, morphology and isotopic composition of MTGI and IW allows paleoenvironmental reconstructions for Late Pleistocene and Holocene period in the Kara Sea Region. This work summarizes result of long-term research of ice-rich permafrost at eight key sites located in the Yamal, Gydan, Taimyr Peninsulas, and Sibiryakov Island. We identified several types of ground ice in the coastal sediments and summarized data on their isotopic and geochemical composition, and methane content. We summarized the available data on particle size distribution, ice chemical composition, including organic carbon content, and age of the enclosing ice sediments. The results show that Quaternary sediments of the region accumulated during MIS 5 – MIS 1 and generally consisted of two main stratigraphic parts. Ice-rich polygenetic continental sediments with syngenetic and epigenetic IW represent the upper part of geological sections (10–15 m). The IW formed in two stages: in the Late Pleistocene (MIS 3 – MIS 2) and in the Holocene cold periods. Oxygen isotope composition of IW formed during MIS 3 – MIS 2 is on average 6‰ lower than that of the Holocene IW. The saline clay with rare sand layers of the lower part of geological sections, formed in marine and shallow shelf anaerobic conditions. MTGI present in the lower part of the sections. The MTGI formed under epigenetic freezing of marine sediments immediately after sea regression and syngenetic freezing of marine sediments in the tidal zone and in the conditions of shallow sea.


Sign in / Sign up

Export Citation Format

Share Document