kara sea
Recently Published Documents


TOTAL DOCUMENTS

731
(FIVE YEARS 207)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
A. D. Dzyublo ◽  
◽  
V. V. Maslov ◽  
V. V. Sidorov ◽  
O. A. Shnip ◽  
...  

According to the oil and geological zoning, the water area of the Kara Sea, including the Ob and Taz Bays, is located on the border of three oil and gas-bearing regions: Yamal, Gydan and Nadym-Purskaya, having different characteristics of oil and gas potential by section and by area. As a result of geological exploration carried out in the water area and on the adjacent land, a wide age range of oil and gas potential was revealed. Seven fields have been discovered in the waters of the Yuzhno-Kara NGO: six gas condensate fields in Cretaceous Cenomanian-Albian deposits and one oil and gas condensate field in Cretaceous and Jurassic deposits. Large gas condensate fields have been explored in the Ob and Taz bays in the Cenomanian-Alb-Apt complex. The water area of the lips is one of the most important areas in terms of the growth of economically viable natural gas resources. According to the research results, it has been established that the UV potential of the Jurassic and Lower Cretaceous complexes of the Ob and Taz Bays is characterized as highly promising. Keywords: Kara Sea; shelf; cretaceous and jurassic deposits.


Author(s):  
Eun‐Sook Heo ◽  
Soon‐Il An ◽  
Ida Margrethe Ringgaard ◽  
Shuting Yang ◽  
Jens Hesselbjerg Christensen ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Olga Konovalova ◽  
Alexandra Gordey

The Gulf of Ob is among the largest estuaries in the World Ocean in terms of area, watershed basin, and freshwater discharge. In this work, we describe the roles of river discharge and wind forcing on the water exchange between the Gulf of Ob and the Kara Sea during ice-free seasons. This work is based on the extensive in situ measurements performed during 10 oceanographic surveys in 2007–2019. Due to large river runoff (∼530 km3 annually) and low tidal forcing (<0.5 m/s), the estuarine processes in the Gulf of Ob during the ice-free season are generally governed by gravitational circulation. Local wind forcing significantly affects general estuarine circulation and mixing only in rare cases of strong winds (∼10 m/s). On the other hand, remote wind forcing over the central part of the Kara Sea regularly intensifies estuarine—sea water exchange. Eastern winds in the central part of the Kara Sea induce upwelling in the area adjacent to the Gulf of Ob, which increases the barotropic pressure gradient between the gulf and the open sea. As a result, intense and distant (120–170 km) inflows of saline water to the gulf occur as compared to the average conditions (50–70 km). Remote wind forcing has a far stronger impact on saltwater intrusion into the Gulf of Ob than the highly variable river discharge rate. In particular, saltwater reaches the shallow central part of the gulf only during upwelling-induced intense inflows. In the other periods (even under low discharge conditions), fresh river water occupies this area from surface to bottom. The upwelling-induced intense inflows occur on average during a quarter of days (July to October) when the gulf is free of ice. They substantially increase the productivity of phytoplankton communities in the gulf and modify the taxa ratio toward the increase of brackish water species and the decrease of freshwater species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Dmitry Frey ◽  
Eduard Spivak ◽  
Sergey Shchuka ◽  
Natalia Tilinina ◽  
...  

This work is focused on the structure and inter-annual variability of the freshened surface layer (FSL) in the Laptev and East-Siberian seas during ice-free periods. This layer is formed mainly by deltaic rivers among which the Lena River contributes about two thirds of the inflowing freshwater volume. Based on in situ measurements, we show that the area of this FSL during certain years is much greater than the area of FSL in the neighboring Kara Sea, while the total annual freshwater discharge to the Laptev and East-Siberian seas is 1.5 times less than to the Kara Sea (mainly from the estuaries of the Ob and Yenisei rivers). This feature is caused by differences in morphology of the estuaries and deltas. Shallow and narrow channels of the Lena Delta are limitedly affected by sea water. As a result, undiluted Lena discharge inflows to sea from multiple channels and forms relatively shallow plume, as compared to the Ob-Yenisei plume, which mixes with subjacent saline sea water in deep and wide estuaries. Due to small vertical extents of FSL in the Laptev and East-Siberian seas, wind conditions strongly affect its spreading and determine its significant inter-annual variability, as compared to relatively stable FSL in the Kara Sea. During years with prevailing western and northern winds, FSL is localized in the southern parts of the Laptev and East-Siberian seas due to southward Ekman transport, meridional extent (<250 km) and area (∼250,000 km2) of FSL are relatively small. During years with strong eastern winds FSL spreads northward over large area (up to 500,000 km2), its meridional extent increases up to 500–700 km. At the same time, area and position of FSL do not show any dependence on significant variability of the annual river discharge volume and ice coverage during warm season.


2021 ◽  
Vol 9 ◽  
Author(s):  
I. D. Streletskaya ◽  
A. A. Pismeniuk ◽  
A. A. Vasiliev ◽  
E. A. Gusev ◽  
G. E. Oblogov ◽  
...  

The Kara Sea coast and part of the shelf are characterized by wide presence of the ice-rich permafrost sequences containing massive tabular ground ice (MTGI) and ice wedges (IW). The investigations of distribution, morphology and isotopic composition of MTGI and IW allows paleoenvironmental reconstructions for Late Pleistocene and Holocene period in the Kara Sea Region. This work summarizes result of long-term research of ice-rich permafrost at eight key sites located in the Yamal, Gydan, Taimyr Peninsulas, and Sibiryakov Island. We identified several types of ground ice in the coastal sediments and summarized data on their isotopic and geochemical composition, and methane content. We summarized the available data on particle size distribution, ice chemical composition, including organic carbon content, and age of the enclosing ice sediments. The results show that Quaternary sediments of the region accumulated during MIS 5 – MIS 1 and generally consisted of two main stratigraphic parts. Ice-rich polygenetic continental sediments with syngenetic and epigenetic IW represent the upper part of geological sections (10–15 m). The IW formed in two stages: in the Late Pleistocene (MIS 3 – MIS 2) and in the Holocene cold periods. Oxygen isotope composition of IW formed during MIS 3 – MIS 2 is on average 6‰ lower than that of the Holocene IW. The saline clay with rare sand layers of the lower part of geological sections, formed in marine and shallow shelf anaerobic conditions. MTGI present in the lower part of the sections. The MTGI formed under epigenetic freezing of marine sediments immediately after sea regression and syngenetic freezing of marine sediments in the tidal zone and in the conditions of shallow sea.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexey Udalov ◽  
Margarita Chikina ◽  
Alexandra Chava ◽  
Andrey Vedenin ◽  
Sergey Shchuka ◽  
...  

Despite a large number of studies, a detailed overall picture of benthic communities zonation in the Arctic fjords is currently lacking. Our study aimed to find out whether there is a universal model for the distribution of benthic communities based on the structural features of the fjords. We examined benthic macrofaunal communities in fjords with various environmental settings on the eastern coast of Novaya Zemlya Archipelago, Kara Sea. The material was collected during five cruises undertaken from 2013 to 2016. A total of 50 stations located in the five fjords were taken. In all five fjords, macrofauna had a similar composition assembled from a regional species pool, with a predominance of species tolerant to glacial sedimentation and fluctuations in temperature and salinity. Benthic communities changed consistently along the axis of the bay from the outer slope to the inner parts. Biodiversity and quantitative characteristics of the macrofauna decreased along the environmental gradient related to terrigenous and glacial runoff, consistent with patterns reported in other studies of Arctic glacial fjords. The most impoverished communities were dominated by bivalve Portlandia arctica and isopod Saduria sabini. At the same time, fjord walls and sills, characterized by low sedimentation rates, strong currents and the presence of ice-rafted debris, were inhabited by patchy distributed benthic communities dominated by species confined to hard substrates. In general, the distribution of communities corresponded to five zones: depleted inner periglacial areas, the upper subtidal belt with stony substrates, deep inner semi-isolated basin, outer non-isolated basins and upper slope transitioning to lower slope. Our study can provide a reference point for monitoring changes in fjord ecosystems in response to climate change and the potential impact of human activities.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2394
Author(s):  
Tatiana A. Belevich ◽  
Irina A. Milyutina ◽  
Aleksey V. Troitsky

This survey is the first to explore the seasonal cycle of microbial eukaryote diversity (<3 µm) using the NGS method and a 10-month sediment trap (2018–2019). The long-term trap was deployed from September to June in the northwestern part of the Kara Sea. A water sample collected before the sediment trap was deployed and also analyzed. The taxonomic composition of microbial eukaryotes in the water sample significantly differed from sediment trap samples, characterized by a high abundance of Ciliophora reads and low abundance of Fungi while trap samples contained an order of magnitude less Ciliophora sequences and high contribution of Fungi. Photosynthetic eukaryotes (PEs) accounting for about 34% of total protists reads were assigned to five major divisions: Chlorophyta, Cryptophyta, Dinoflagellata, Haptophyta, and Ochrophyta. The domination of phototrophic algae was revealed in late autumn. Mamiellophyceae and Trebouxiophyceae were the predominant PEs in mostly all of the studied seasons. Micromonas polaris was constantly present throughout the September–June period in the PE community. The obtained results determine the seasonal dynamics of picoplankton in order to improve our understanding of their role in polar ecosystems.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12444
Author(s):  
Svetlana Yu. Orlova ◽  
Sergey Rastorguev ◽  
Tatyana Bagno ◽  
Denis Kurnosov ◽  
Artem Nedoluzhko

The Pacific herring (Clupea pallasii) is one of the most important species in the commercial fisheries distributed in the North Pacific Ocean and the northeastern European seas. This teleost has marine and lake ecological forms a long its distribution in the Holarctic. However, the level of genetic differentiation between these two forms is not well known. In the present study, we used ddRAD-sequencing to genotype 54 specimens from twelve wild Pacific herring populations from the Kara Sea and the Russian part of the northwestern Pacific Ocean for unveiling the genetic structure of Pacific herring. We found that the Kara Sea population is significantly distinct from Pacific Ocean populations. It was demonstrated that lake populations of Pacific herring differ from one another as well as from marine specimens. Our results show that fresh and brackish water Pacific herring, which inhabit lakes, can be distinguished as a separate lake ecological form. Moreover, we demonstrate that each observed lake Pacific herring population has its own and unique genetic legacy.


2021 ◽  
Vol 40 (11) ◽  
pp. 119-128
Author(s):  
Chunming Dong ◽  
Hongtao Nie ◽  
Xiaofan Luo ◽  
Hao Wei ◽  
Wei Zhao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document