Results of long-term performance and subsequent laboratory tests of RPCs of the L3 forward–backward muon spectrometer

Author(s):  
M. Alviggi ◽  
M. Caprio ◽  
G. Carlino ◽  
F. Conventi ◽  
D. della Volpe ◽  
...  
Author(s):  
Robert Worthingham ◽  
Matt Cetiner

TransCanada Pipelines has been using fusion bond epoxy (FBE) external coatings for large diameter line pipe since the early 1980’s. Overall, this coating type, when applied in accordance to the CSA Z245.20 standard provides excellent protection and long term service life. However, some reports from the field described the periodic occurrence of blistering and disbondment of the coating. In order to understand the magnitude and causes of these phenomena, an investigative program was initiated. Laboratory tests and a program of field examinations were carried out. Some of the variables considered were: age of the coating; service temperature; cathodic protection (CP) levels; and soil type. No evidence of a pipeline integrity threat associated with fusion bond epoxy deterioration was found at any of the locations examined. Observations and correlations of coating to exposure conditions will be presented.


Author(s):  
Erdem Coleri ◽  
John T. Harvey

Laboratory tests are conducted with asphalt concrete materials to determine the expected in-situ performance. In addition, laboratory test results are commonly used in mechanistic-empirical design methods for material characterization to improve the predictive accuracy of the models. However, the effectiveness of laboratory tests in characterizing the long-term performance of asphalt concrete materials needs to be validated to be able to use the results for pavement design and long-term performance prediction. Inaccurate performance characterization and prediction can directly affect the decision-making process for pavement maintenance, rehabilitation, and reconstruction and result in unexpected early failures in the field. The major objective of this study is to determine the impact of using laboratory-measured asphalt stiffness on the prediction accuracy of mechanistic-empirical models. In addition, the effect of using linear-elastic modeling assumptions (layered elastic theory) and neglecting the nonlinearity of pavement response at high load levels (and/or at high strain levels for weaker structures) on the predicted rutting performance was determined. In this study, the effectiveness of the use of laboratory asphalt stiffness tests for in-situ asphalt stiffness characterization was determined by comparing the rutting performance predicted using laboratory-measured stiffness to rutting predicted using strain-gauge backcalculated stiffness. It was determined that laboratory tests are able to characterize the in-situ stiffness characteristics of the asphalt mix used in this study and the stiffness characterization process suggested in this study can provide reliable rutting performance predictions. Results of this study are only applicable to tested rubberized asphalt concrete mixtures.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document