Long Term Performance of Fusion Bond Epoxy Coated Pipelines

Author(s):  
Robert Worthingham ◽  
Matt Cetiner

TransCanada Pipelines has been using fusion bond epoxy (FBE) external coatings for large diameter line pipe since the early 1980’s. Overall, this coating type, when applied in accordance to the CSA Z245.20 standard provides excellent protection and long term service life. However, some reports from the field described the periodic occurrence of blistering and disbondment of the coating. In order to understand the magnitude and causes of these phenomena, an investigative program was initiated. Laboratory tests and a program of field examinations were carried out. Some of the variables considered were: age of the coating; service temperature; cathodic protection (CP) levels; and soil type. No evidence of a pipeline integrity threat associated with fusion bond epoxy deterioration was found at any of the locations examined. Observations and correlations of coating to exposure conditions will be presented.

Author(s):  
Erdem Coleri ◽  
John T. Harvey

Laboratory tests are conducted with asphalt concrete materials to determine the expected in-situ performance. In addition, laboratory test results are commonly used in mechanistic-empirical design methods for material characterization to improve the predictive accuracy of the models. However, the effectiveness of laboratory tests in characterizing the long-term performance of asphalt concrete materials needs to be validated to be able to use the results for pavement design and long-term performance prediction. Inaccurate performance characterization and prediction can directly affect the decision-making process for pavement maintenance, rehabilitation, and reconstruction and result in unexpected early failures in the field. The major objective of this study is to determine the impact of using laboratory-measured asphalt stiffness on the prediction accuracy of mechanistic-empirical models. In addition, the effect of using linear-elastic modeling assumptions (layered elastic theory) and neglecting the nonlinearity of pavement response at high load levels (and/or at high strain levels for weaker structures) on the predicted rutting performance was determined. In this study, the effectiveness of the use of laboratory asphalt stiffness tests for in-situ asphalt stiffness characterization was determined by comparing the rutting performance predicted using laboratory-measured stiffness to rutting predicted using strain-gauge backcalculated stiffness. It was determined that laboratory tests are able to characterize the in-situ stiffness characteristics of the asphalt mix used in this study and the stiffness characterization process suggested in this study can provide reliable rutting performance predictions. Results of this study are only applicable to tested rubberized asphalt concrete mixtures.


2021 ◽  
Vol 42 ◽  
pp. 102467
Author(s):  
Naveen Krishnan ◽  
Deepak K. Kamde ◽  
Zameel Doosa Veedu ◽  
Radhakrishna G. Pillai ◽  
Dhruvesh Shah ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 826-827
Author(s):  
W.K. Collins ◽  
S.D. Cramer ◽  
B.S. Covino ◽  
R.D. Govier ◽  
G.R. Holcomb ◽  
...  

Microanalysis has proved crucial in developing thermal-sprayed metal coatings on the surface of reinforced concrete to serve as anodes in impressed current (ICCP) and galvanic (GCP) cathodic protection systems and in understanding their long-term performance. Corrosion of reinforcing bar in concrete bridges is the primary cause of structural deterioration in high chloride environments such as coastal locations and colder climates where roads are deiced with salt. Over 40 pet of more than 500,000 bridges surveyed in the U.S. are in need of repair or rehabilitation. Cathodic protections is the most effective method of mitigating the effects of corrosion due to chloride contaminated concrete. While a young technology, consumable thermal sprayed zinc anodes (see Figure 1 for a schematic of the process) totaling over 40,000 m2 (430,00 ft2) have been installed on the Oregon coast, primarily on the Depoe Bay, Yaquina Bay, and Cape Creek bridges.


Author(s):  
Gerardo G. Clemeña ◽  
Donald R. Jackson

As part of continuous efforts to identify effective and durable anodes for use in cathodic protection (CP) of reinforced concrete bridge members, a water-based, electrically conductive paint was evaluated for use as the secondary anode in CP systems for inland concrete piers. The paint was used in two CP systems—one designed and built approximately 6 years ago and the other 8 years ago—to protect the concrete piers of two pairs of twin bridges in Virginia. When adjusted properly, the two systems provided more than sufficient protection to the reinforcing steel. Natural paint deterioration occurred in both systems. In the 8-year-old system, this deterioration ranged from 0 to 0.37 percent. In the 6-year-old system, it ranged from 0 to 0.14 percent. Most of the deterioration occurred at the ends of the pier caps, where the concrete is not sheltered from rain by a deck overhang. The overall performance of the conductive paint in these CP systems was better than expected. Its effectiveness could last for at least 15 years, even longer if minor paint deterioration is touched up as early as possible. This type of conductive paint should, therefore, be considered a suitable secondary anode for use in CP of inland concrete piers.


2020 ◽  
Vol 3 (1) ◽  
pp. 35
Author(s):  
Tayfun Uygunoğlu ◽  
İlker Bekir Topçu

Improving the strength of the concrete structures and increasing the service life is an important issue. The service times of the concrete remained; external factors such as water penetrating into these micro-cracks and shorten the life of the concrete. In order to solve this problem, the idea of self-healing concrete with bacteria or other materials has been put forward and studies have shown that using CaO based materials that repair cracks in this direction by precipitating calcite. It is obvious that long term performance of concrete will increase with to prevent water pass to concrete interior. Instead of forming a barrier on the positive or negative side of concrete, water proofing admixture turn the concrete itself into a water barrier. Internal concrete waterproofing systems can be water repellents or crystalline admixtures. In this study, water proofing admixture was added to concrete mixture as water proofing material and its effect on self-healing in terms of filling the pores was investigated. Beam samples including the CaO based water proofing powder materials were produced in size of 285x75x25 mm. The samples were cracked in the flexural machine. After some days, the cracks were investigated by microscope. Crak control was continued till 28 days. At the end of study, the cracks smaller than 0.3 mm were self-healed. However, the bigger cracks than 0.3 mm cannot be self-healed by water proofing material. Consequently, self-healing of concrete with CaO based water proofing powder material is very promising for the environmentally friendly and sustainable structures of the future.


Author(s):  
Alireza Joshaghani

Stone mastic asphalt (SMA) has not been widely used in the pavement industry, and there are no detailed design specifications for this type of asphalt. Therefore, long-term performance data is not available widely, and no performance model has been developed for SMA. The main purpose of this study was to integrate expert knowledge (using the Markov-chain process) and experimental data from field investigations to propose a performance model for SMA through the incorporation of the Bayesian technique. The combination of these sources of data resulted in an efficient and effective method to develop a performance model for this type of pavement, which did not have a long-term performance database. As a result, a robust linear performance model was established to predict the service life of SMA. The service life of SMA can be estimated explicitly according to the developed performance model which has been validated using a new set of data.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document