Slow axonal transport of the microtubule-associated protein tau

2000 ◽  
Vol 21 ◽  
pp. 113
Author(s):  
Michelle A. Utton ◽  
Richard Killick ◽  
Andrew Grierson ◽  
Steve Ackerly ◽  
Simon Lovestone ◽  
...  
2002 ◽  
Vol 22 (15) ◽  
pp. 6394-6400 ◽  
Author(s):  
Michelle A. Utton ◽  
James Connell ◽  
Ayodeji A. Asuni ◽  
Marjon van Slegtenhorst ◽  
Michael Hutton ◽  
...  

2021 ◽  
Author(s):  
Christopher L. Berger ◽  
Dominique V. Lessard

Many neurodegenerative diseases result from dysfunction of axonal transport, a highly regulated cellular process responsible for site-specific neuronal cargo delivery. The kinesin-3 family member KIF1A is a key mediator of this process by facilitating long-distance cargo delivery in a spatiotemporally regulated manner. While misregulation of KIF1A cargo delivery is observed in many neurodegenerative diseases, the regulatory mechanisms responsible for KIF1A cargo transport are largely unexplored. Our lab has recently characterized a mechanism for a unique pausing behavior of KIF1A in between processive segments on the microtubule. This behavior, mediated through an interaction between the KIF1A K-loop and the polyglutamylated C-terminal tails of tubulin, helps us further understand how KIF1A conducts long-range cargo transport. However, how this pausing behavior is influenced by other regulatory factors on the microtubule is an unexplored concept. The microtubule associated protein Tau is one potential regulator, as altered Tau function is a pathological marker in many neurodegenerative diseases. However, while the effect of Tau on kinesin-1 and -2 has been extensively characterized, its role in regulating KIF1A transport is greatly unexplored at the behavioral level. Using single-molecule imaging, we have identified Tau-mediated regulation of KIF1A pausing behavior and motility. Specifically, our findings imply a competitive interaction between Tau and KIF1A for the C-terminal tails of tubulin. We introduce a new mechanism of Tau-mediated kinesin regulation by inhibiting the ability of KIF1A to use C-terminal tail reliant pauses to connect multiple processive segments into a longer run length. Moreover, we have correlated this regulatory mechanism to the behavioral dynamics of Tau, further elucidating the function of Tau diffusive and static behavioral state on the microtubule surface. In summary, we introduce a new mechanism of Tau-mediated motility regulation, providing insight on how disruptions in axonal transport can lead to disease state pathology.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1075-1085 ◽  
Author(s):  
Daryl D Hurd ◽  
William M Saxton

Abstract Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases.


2016 ◽  
Vol 137 (6) ◽  
pp. 939-954 ◽  
Author(s):  
H. Eric Feinstein ◽  
Sarah J. Benbow ◽  
Nichole E. LaPointe ◽  
Nirav Patel ◽  
Srinivasan Ramachandran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document