Lower bounds of Dirichlet eigenvalues for a class of finitely degenerate Grushin type elliptic operators

2017 ◽  
Vol 37 (6) ◽  
pp. 1653-1664 ◽  
Author(s):  
Hua CHEN ◽  
Hongge CHEN ◽  
Yirui DUAN ◽  
Xin HU
1999 ◽  
Vol 125 (1) ◽  
pp. 105-111 ◽  
Author(s):  
E. B. DAVIES

Suppose that H=H*[ges ]0 on L2(X, dx) and that e−Ht has an integral kernel K(t, x, y) which is a continuous function of all three variables. It follows from the fact that e−Ht is a non-negative self-adjoint operator that K(t, x, x)[ges ]0 for all t>0 and x∈X. Our main abstract results, Theorems 2 and 3, provide a positive lower bound on K(t, x, x) under suitable general hypotheses. As an application we obtain a explicit positive lower bound on K(t, x, y) when x is close enough to y and H is a higher order uniformly elliptic operator in divergence form acting in L2(RN, dx); see Theorem 6.We emphasize that our results are not applicable to second order elliptic operators (except in one space dimension). For such operators much stronger lower bounds can be obtained by an application of the Harnack inequality. For higher order operators, however, we believe that our result is the first of its type which does not impose any continuity conditions on the highest order coefficients of the operators.


2006 ◽  
Vol 78 (3) ◽  
pp. 391-404 ◽  
Author(s):  
Gregório P. Bessa ◽  
Luquésio P. Jorge ◽  
Barnabé P. Lima ◽  
José F. Montenegro

We establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c).


2015 ◽  
Vol 160 (2) ◽  
pp. 191-208 ◽  
Author(s):  
SERGEI ARTAMOSHIN

AbstractWe consider domains in a simply connected space of constant negative curvature and develop a new technique that improves existing classical lower bound for Dirichlet eigenvalues obtained by H. P. McKean as well as the lower bounds recently obtained by A. Savo.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hua Chen ◽  
Hong-Ge Chen

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^n \; (n\geq 2) $\end{document}</tex-math></inline-formula> be a bounded domain with continuous boundary <inline-formula><tex-math id="M2">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>. In this paper, we study the Dirichlet eigenvalue problem of the fractional Laplacian which is restricted to <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ 0&lt;s&lt;1 $\end{document}</tex-math></inline-formula>. Denoting by <inline-formula><tex-math id="M5">\begin{document}$ \lambda_{k} $\end{document}</tex-math></inline-formula> the <inline-formula><tex-math id="M6">\begin{document}$ k^{th} $\end{document}</tex-math></inline-formula> Dirichlet eigenvalue of <inline-formula><tex-math id="M7">\begin{document}$ (-\triangle)^{s}|_{\Omega} $\end{document}</tex-math></inline-formula>, we establish the explicit upper bounds of the ratio <inline-formula><tex-math id="M8">\begin{document}$ \frac{\lambda_{k+1}}{\lambda_{1}} $\end{document}</tex-math></inline-formula>, which have polynomially growth in <inline-formula><tex-math id="M9">\begin{document}$ k $\end{document}</tex-math></inline-formula> with optimal increase orders. Furthermore, we give the explicit lower bounds for the Riesz mean function <inline-formula><tex-math id="M10">\begin{document}$ R_{\sigma}(z) = \sum_{k}(z-\lambda_{k})_{+}^{\sigma} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ \sigma\geq 1 $\end{document}</tex-math></inline-formula> and the trace of the Dirichlet heat kernel of fractional Laplacian.</p>


Sign in / Sign up

Export Citation Format

Share Document