The role of rat dorsomedial prefrontal cortex in working memory for egocentric responses

2001 ◽  
Vol 308 (3) ◽  
pp. 145-148 ◽  
Author(s):  
Michael E. Ragozzino ◽  
Raymond P. Kesner
2012 ◽  
Vol 109 (49) ◽  
pp. 19900-19909 ◽  
Author(s):  
K. D'Ardenne ◽  
N. Eshel ◽  
J. Luka ◽  
A. Lenartowicz ◽  
L. E. Nystrom ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43731 ◽  
Author(s):  
Nicola De Pisapia ◽  
Marco Sandrini ◽  
Todd S. Braver ◽  
Luigi Cattaneo

1994 ◽  
Vol 71 (2) ◽  
pp. 515-528 ◽  
Author(s):  
T. Sawaguchi ◽  
P. S. Goldman-Rakic

1. To examine the role of dopamine receptors in the prefrontal cortex (PFC) on working memory, we injected dopamine antagonists (SCH23390, SCH39166, haloperidol, sulpiride, and raclopride) locally into the dorsolateral PFC in two monkeys trained to perform an oculomotor delayed-response (ODR) task. In the ODR task, monkeys fixate a central spot on a cathode ray tube (CRT) monitor while a visual cue is briefly (300 ms) presented in one of several peripheral locations in the visual field. After a delay of 1.5-6 s, the fixation spot is turned off, instructing the monkey to move its eyes to the target location that had been indicated by the visuospatial cue before the delay. Each monkey also performed a control task in which the cue remained on during the delay period. In this task the monkey's response was sensory rather than memory guided. 2. Local intracerebral injection of the selective dopamine antagonists SCH23390 (10-80 micrograms) and SCH39166 (1-5 micrograms) and/or the nonselective dopamine antagonist haloperidol (10-100 micrograms) induced deficits in ODR task performance at a total of 22 sites in the dorsolateral PFC. The deficit was characterized by a decrease in the accuracy of the memory-guided saccade as well as an increase in the latency of the response. The deficit usually appeared within 1-3 min after the injection, reached a peak at 20-40 min, and recovered at 60-90 min. 3. Performance change was restricted to a few specific target locations, which varied with the injection site and were most often contralateral to the injection site. 4. The degree of impairment in the ODR task occasioned by the injection of the dopamine antagonists was sensitive to the duration of delay; longer delays were associated with larger decreases in the accuracy and delayed onset of the memory-guided saccade. 5. The deficit was dose dependent; higher doses induced larger errors and increases in the onset of the memory-guided saccade. 6. Dopamine antagonists did not affect performance on the control task, which required the same eye movements but was sensory guided. Thus, in the same experimental session in which ODR performance was impaired, the accuracy and the latency of the sensory-guided saccades were normal for every target location.(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 20 (04) ◽  
pp. 249-265 ◽  
Author(s):  
MASSIMILIANO VERSACE ◽  
MARCO ZORZI

How do organisms select and organize relevant sensory input in working memory (WM) in order to deal with constantly changing environmental cues? Once information has been stored in WM, how is it protected from and altered by the continuous stream of sensory input and internally generated planning? The present study proposes a novel role for dopamine (DA) in the maintenance of WM in the prefrontal cortex (Pfc) neurons that begins to address these issues. In particular, DA mediates the alternation of the Pfc network between input-driven and internally-driven states, which in turn drives WM updates and storage. A biologically inspired neural network model of Pfc is formulated to provide a link between the mechanisms of state switching and the biophysical properties of Pfc neurons. This model belongs to the recurrent competitive fields33 class of dynamical systems which have been extensively mathematically characterized and exhibit the two functional states of interest: input-driven and internally-driven. This hypothesis was tested with two working memory tasks of increasing difficulty: a simple working memory task and a delayed alternation task. The results suggest that optimal WM storage in spite of noise is achieved with a phasic DA input followed by a lower DA sustained activity. Hypo and hyper-dopaminergic activity that alter this ideal pattern lead to increased distractibility from non-relevant pattern and prolonged perseverations on presented patterns, respectively.


Sign in / Sign up

Export Citation Format

Share Document