Adenosine protects chick embryonic sympathetic neurons from apoptotic death by 2′-deoxyadenosine - importance of ATP in apoptosis

1998 ◽  
Vol 252 (3) ◽  
pp. 163-166 ◽  
Author(s):  
Arun R Wakade ◽  
Taruna D Wakade ◽  
Jayant S Kulkarni
2004 ◽  
Vol 11 (6) ◽  
pp. 618-630 ◽  
Author(s):  
O Jabado ◽  
Q Wang ◽  
H J Rideout ◽  
M Yeasmin ◽  
K X Guo ◽  
...  

2001 ◽  
Vol 21 (14) ◽  
pp. 4713-4724 ◽  
Author(s):  
Zhiheng Xu ◽  
Anna C. Maroney ◽  
Pawel Dobrzanski ◽  
Nickolay V. Kukekov ◽  
Lloyd A. Greene

ABSTRACT Neuronal apoptotic death induced by nerve growth factor (NGF) deprivation is reported to be in part mediated through a pathway that includes Rac1 and Cdc42, mitogen-activated protein kinase kinases 4 and 7 (MKK4 and -7), c-Jun N-terminal kinases (JNKs), and c-Jun. However, additional components of the pathway remain to be defined. We show here that members of the mixed-lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper kinase [DLK]) are expressed in neuronal cells and are likely to act between Rac1/Cdc42 and MKK4 and -7 in death signaling. Overexpression of MLKs effectively induces apoptotic death of cultured neuronal PC12 cells and sympathetic neurons, while expression of dominant-negative forms of MLKs suppresses death evoked by NGF deprivation or expression of activated forms of Rac1 and Cdc42. CEP-1347 (KT7515), which blocks neuronal death caused by NGF deprivation and a variety of additional apoptotic stimuli and which selectively inhibits the activities of MLKs, effectively protects neuronal PC12 cells from death induced by overexpression of MLK family members. In addition, NGF deprivation or UV irradiation leads to an increase in both level and phosphorylation of endogenous DLK. These observations support a role for MLKs in the neuronal death mechanism. With respect to ordering the death pathway, dominant-negative forms of MKK4 and -7 and c-Jun are protective against death induced by MLK overexpression, placing MLKs upstream of these kinases. Additional findings place the MLKs upstream of mitochondrial cytochromec release and caspase activation.


Author(s):  
E. B. Masurovsky ◽  
H. H. Benitez ◽  
M. R. Murray

Recent light- and electron microscope studies concerned with the effects of D2O on the development of chick sympathetic ganglia in long-term, organized culture revealed the presence of rod-like fibrillar formations, and associated granulofibrillar bodies, in the nuclei of control and deuterated neurons. Similar fibrillar formations have been reported in the nuclei of certain mammalian CNS neurons; however, related granulofibrillar bodies have not been previously described. Both kinds of intranuclear structures are observed in cultures fixed either in veronal acetate-buffered 2%OsO4 (pH 7. 4), or in 3.5% glutaraldehyde followed by post-osmication. Thin sections from such Epon-embedded cultures were stained with ethanolic uranyl acetate and basic lead citrate for viewing in the electron microscope.


Author(s):  
Arthur Lo ◽  
Lucy Norcliffe-Kaufmann ◽  
Ross Vickery ◽  
David Bourdet ◽  
Jitendra Kanodia

Abstract Purpose Ampreloxetine is a novel, selective, long-acting norepinephrine reuptake (NET) inhibitor being investigated as a once-daily oral treatment for symptomatic neurogenic orthostatic hypotension (nOH) in patients with autonomic synucleinopathies. The purpose of this study was to characterize the pharmacokinetic and pharmacodynamic profiles of ampreloxetine in this target population. Methods Patients with nOH were enrolled in a multicenter, phase II clinical trial of ampreloxetine (NCT02705755). They received escalating doses over 5 days in the clinical research unit, followed by 20 weeks of open-label treatment and then a 4-week withdrawal. As neurochemical biomarkers of NET inhibition, we assayed plasma concentrations of norepinephrine (NE) and its main intraneuronal metabolite 3,4-dihydroxyphenylglycol (DHPG) pre- and post-ampreloxetine. Results Thirty-four patients with nOH were enrolled. Plasma ampreloxetine concentrations increased with repeated escalating doses, with peak concentrations observed 6–9 h post-drug administration. The median ampreloxetine dose in the 20-week treatment phase was 10 mg once daily. Plasma ampreloxetine concentrations reached steady state by 2 weeks, with stable plasma levels over 24 h. No influence of age or renal function on ampreloxetine plasma concentrations was observed. On treatment, compared to baseline, plasma NE significantly increased by 71% (p < 0.005), plasma DHPG significantly declined by 22% (p < 0.05), and the NE:DHPG ratio significantly increased (p < 0.001). Conclusions Persistent elevation of plasma NE levels accompanied by reduced DHPG levels after ampreloxetine suggests reduced neuronal reuptake and metabolism of NE in postganglionic efferent sympathetic neurons. The findings are consistent with long-lasting NET inhibition, which may increase vasoconstrictor tone, supporting once-daily ampreloxetine dosing in patients with nOH.


Sign in / Sign up

Export Citation Format

Share Document