fluorescent proteins
Recently Published Documents


TOTAL DOCUMENTS

2127
(FIVE YEARS 539)

H-INDEX

106
(FIVE YEARS 12)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Minyan Zheng ◽  
Olga Zueva ◽  
Veronica Hinman

The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent stem cells, tissue-specific stem cells or have de- or trans- differentiated, remains one of the most important open questions in regeneration. Additionally, it is not clearly known whether developmental gene regulatory networks (GRNs) are reused to direct specification in these cells or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration and have therefore been the subject of many thorough studies on the ultrastructural and molecular properties of cells needed for regeneration. However, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study we develop new transgenic tools to follow the fate of populations of cells in the regenerating bipinnaria larva of the sea star Patira minaita. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach with photoconvertible fluorescent proteins, we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells at the wound site, even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.


2022 ◽  
Author(s):  
Sara Caviglia ◽  
Iris A Unterweger ◽  
Akvile Gasiunaite ◽  
Alexandre E Vanoosthuyse ◽  
Francesco Cutrale ◽  
...  

Visualizing cell shapes, interactions and lineages of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated tracking cells in in vivo and mapping neuronal connectivity. Nevertheless, integrating multi-fluorophore information into the context of developing tissues in zebrafish is challenging given their cytoplasmic localization and spectral incompatibility with commonly used fluorescent markers. Here, we developed FRaeppli (Fish-Raeppli) expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. By tailoring hyperspectral protocols for time-efficient acquisition, we demonstrate FRaeppli s suitability for live imaging of complex internal organs, like the liver. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting shared developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and tissue lineages at single-cell resolution in zebrafish.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Hao Zheng ◽  
Yong Pan ◽  
Xiong Wang ◽  
Weibin Tian ◽  
Lunguang Yao ◽  
...  

The baculovirus display system (BDS), an excellent eukaryotic surface display technology that offers the advantages of safety, efficiency, and economy, is widely used in biomedicine. A previous study using rBacmid-Δgp64-ires-gp64 expressed in low copy numbers of the gp64 gene achieved high-efficiency expression and co-display of three fluorescent proteins (GFP, YFP, and mCherry). However, low expression of GP64 in recombinant baculoviruses also reduces the efficiency of recombinant baculovirus transduction into mammalian cells. In addition, the baculovirus promoter has no expression activity in mammalian cells and thus cannot meet the application requirements of baculoviral vectors for the BDS. Based on previous research, this study first determined the expression activity of promoters in insect Spodoptera frugiperda 9 cells and mammalian cells and successfully screened the very early promoter pie1 to mediate the co-expression of multiple genes. Second, utilizing the envelope display effect of the INVASIN and VSVG proteins, the efficiency of transduction of recombinant baculovirus particles into non-host cells was significantly improved. Finally, based on the above improvement, a recombinant baculovirus vector displaying four antigen proteins with high efficiency was constructed. Compared with traditional BDSs, the rBacmid-Δgp64 system exhibited increased display efficiency of the target protein by approximately 3-fold and induced an approximately 4-fold increase in the titer of serum antibodies to target antigens in Bal B/c mice. This study systematically explored the application of a new multi-gene co-display technology applicable to multi-vaccine research, and the results provide a foundation for the development of novel BDS technologies.


2022 ◽  
Vol 23 (2) ◽  
pp. 770
Author(s):  
Mikhail Drobizhev ◽  
Rosana S. Molina ◽  
Jacob Franklin

Red fluorescent proteins and biosensors built upon them are potentially beneficial for two-photon laser microscopy (TPLM) because they can image deeper layers of tissue, compared to green fluorescent proteins. However, some publications report on their very fast photobleaching, especially upon excitation at 750–800 nm. Here we study the multiphoton bleaching properties of mCherry, mPlum, tdTomato, and jREX-GECO1, measuring power dependences of photobleaching rates K at different excitation wavelengths across the whole two-photon absorption spectrum. Although all these proteins contain the chromophore with the same chemical structure, the mechanisms of their multiphoton bleaching are different. The number of photons required to initiate a photochemical reaction varies, depending on wavelength and power, from 2 (all four proteins) to 3 (jREX-GECO1) to 4 (mCherry, mPlum, tdTomato), and even up to 8 (tdTomato). We found that at sufficiently low excitation power P, the rate K often follows a quadratic power dependence, that turns into higher order dependence (K~Pα with α > 2) when the power surpasses a particular threshold P*. An optimum intensity for TPLM is close to the P*, because it provides the highest signal-to-background ratio and any further reduction of laser intensity would not improve the fluorescence/bleaching rate ratio. Additionally, one should avoid using wavelengths shorter than a particular threshold to avoid fast bleaching due to multiphoton ionization.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Giulia Ambrosi ◽  
Oksana Voloshanenko ◽  
Antonia F Eckert ◽  
Dominique Kranz ◽  
G Ulrich Nienhaus ◽  
...  

Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuki Sakamoto ◽  
Anna Ishimoto ◽  
Yuuki Sakai ◽  
Moeko Sato ◽  
Ryuichi Nishihama ◽  
...  

AbstractTissue clearing methods are increasingly essential for the microscopic observation of internal tissues of thick biological organs. We previously developed TOMEI, a clearing method for plant tissues; however, it could not entirely remove chlorophylls nor reduce the fluorescent signal of fluorescent proteins. Here, we developed an improved TOMEI method (iTOMEI) to overcome these limitations. First, a caprylyl sulfobetaine was determined to efficiently remove chlorophylls from Arabidopsis thaliana seedlings without GFP quenching. Next, a weak alkaline solution restored GFP fluorescence, which was mainly lost during fixation, and an iohexol solution with a high refractive index increased sample transparency. These procedures were integrated to form iTOMEI. iTOMEI enables the detection of much brighter fluorescence than previous methods in tissues of A. thaliana, Oryza sativa, and Marchantia polymorpha. Moreover, a mouse brain was also efficiently cleared by the iTOMEI-Brain method within 48 h, and strong fluorescent signals were detected in the cleared brain.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Hong Yang ◽  
Feng Xiong ◽  
Hai-Bin Qin ◽  
Qun-Tao Yu ◽  
Jin-Yan Sun ◽  
...  

Abstract Background Viral tracers are important tools for mapping brain connectomes. The feature of predominant anterograde transneuronal transmission offers herpes simplex virus-1 (HSV-1) strain H129 (HSV1-H129) as a promising candidate to be developed as anterograde viral tracers. In our earlier studies, we developed H129-derived anterograde polysynaptic tracers and TK deficient (H129-dTK) monosynaptic tracers. However, their broad application is limited by some intrinsic drawbacks of the H129-dTK tracers, such as low labeling intensity due to TK deficiency and potential retrograde labeling caused by axon terminal invasion. The glycoprotein K (gK) of HSV-1 plays important roles in virus entry, egress, and virus-induced cell fusion. Its deficiency severely disables virus egress and spread, while only slightly limits viral genome replication and expression of viral proteins. Therefore, we created a novel H129-derived anterograde monosynaptic tracer (H129-dgK) by targeting gK, which overcomes the limitations of H129-dTK. Methods Using our established platform and pipeline for developing viral tracers, we generated a novel tracer by deleting the gK gene from the H129-G4. The gK-deleted virus (H129-dgK-G4) was reconstituted and propagated in the Vero cell expressing wildtype H129 gK (gKwt) or the mutant gK (gKmut, A40V, C82S, M223I, L224V, V309M), respectively. Then the obtained viral tracers of gKmut pseudotyped and gKwt coated H129-dgK-G4 were tested in vitro and in vivo to characterize their tracing properties. Results H129-dgK-G4 expresses high levels of fluorescent proteins, eliminating the requirement of immunostaining for imaging detection. Compared to the TK deficient monosynaptic tracer H129-dTK-G4, H129-dgK-G4 labeled neurons with 1.76-fold stronger fluorescence intensity, and visualized 2.00-fold more postsynaptic neurons in the downstream brain regions. gKmut pseudotyping leads to a 77% decrease in retrograde labeling by reducing axon terminal invasion, and thus dramatically improves the anterograde-specific tracing of H129-dgK-G4. In addition, assisted by the AAV helper trans-complementarily expressing gKwt, H129-dgK-G4 allows for mapping monosynaptic connections and quantifying the circuit connectivity difference in the Alzheimer’s disease and control mouse brains. Conclusions gKmut pseudotyped H129-dgK-G4, a novel anterograde monosynaptic tracer, overcomes the limitations of H129-dTK tracers, and demonstrates desirable features of strong labeling intensity, high tracing efficiency, and improved anterograde specificity.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gai-Yuan Hu ◽  
Jia-Yi Ma ◽  
Fen Li ◽  
Jing-Ruo Zhao ◽  
Fu-Chun Xu ◽  
...  

Protein fluorescence reporting systems are of crucial importance to in-depth life science research, providing systematic labeling tools for visualization of microscopic biological activities in vivo and revolutionizing basic research. Cotton somatic cell regeneration efficiency is low, causing difficulty in cotton transformation. It is conducive to screening transgenic somatic embryo using the fluorescence reporting system. However, available fluorescence labeling systems in cotton are currently limited. To optimize the fluorescence reporting system of cotton with an expanded range of available fluorescent proteins, we selected 11 fluorescent proteins covering red, green, yellow, and cyan fluorescence colors and expressed them in cotton. Besides mRuby2 and G3GFP, the other nine fluorescent proteins (mCherry, tdTomato, sfGFP, Clover, EYFP, YPet, mVenus, mCerulean, and ECFP) were stably and intensely expressed in transgenic callus and embryo, and inherited in different cotton organs derive from the screened embryo. In addition, transgenic cotton expressing tdTomato appears pink under white light, not only for callus and embryo tissues but also various organs of mature plants, providing a visual marker in the cotton genetic transformation process, accelerating the evaluation of transgenic events. Further, we constructed transgenic cotton expressing mCherry-labeled organelle markers in vivo that cover seven specific subcellular compartments: plasma membrane, endoplasmic reticulum, tonoplast, mitochondrion, plastid, Golgi apparatus, and peroxisome. We also provide a simple and highly efficient strategy to quickly determine the subcellular localization of uncharacterized proteins in cotton cells using organelle markers. Lastly, we built the first cotton stomatal fluorescence reporting system using stomata-specific expression promoters (ProKST1, ProGbSLSP, and ProGC1) to drive Clover expression. The optimized fluorescence labeling system for transgenic somatic embryo screening and functional gene labeling in this study offers the potential to accelerating somatic cell regeneration efficiency and the in vivo monitoring of diverse cellular processes in cotton.


2022 ◽  
Author(s):  
Emmanuel Martin ◽  
Magali Suzanne

Cell and developmental biology increasingly require live imaging of protein dynamics in cells, tissues or living organisms. Thanks to the discovery and the development of a panel of fluorescent proteins over the last decades, live imaging has become a powerful and commonly used approach. However, multicolor live imaging remains challenging. The generation of long Stokes shift red fluorescent proteins, such as mBeRFP, offers interesting new perspectives to bypass this limitation. Here, we constructed a set of mBeRFP-expressing vectors and provided a detailed characterization of this fluorescent protein for in vivo live imaging and its applications in Drosophila. Briefly, we showed that a single illumination source is sufficient to simultaneously stimulate mBeRFP and GFP. We demonstrated that mBeRFP can be easily combined with classical green and red fluorescent protein without any crosstalk. We also showed that the low photobleaching of mBeRFP is suitable for live imaging, and that this protein can be used for quantitative applications such as FRAP or laser ablation. Finally, we believe that this fluorescent protein, with the set of new possibilities it offers, constitutes an important tool for cell, developmental and mechano biologists in their current research.


Author(s):  
Jia Jun Fung ◽  
Karla Blöcher-Juárez ◽  
Anton Khmelinskii

AbstractTandem fluorescent protein timers (tFTs) are versatile reporters of protein dynamics. A tFT consists of two fluorescent proteins with different maturation kinetics and provides a ratiometric readout of protein age, which can be exploited to follow intracellular trafficking, inheritance and turnover of tFT-tagged proteins. Here, we detail a protocol for high-throughput analysis of protein turnover with tFTs in yeast using fluorescence measurements of ordered colony arrays. We describe guidelines on optimization of experimental design with regard to the layout of colony arrays, growth conditions, and instrument choice. Combined with semi-automated genetic crossing using synthetic genetic array (SGA) methodology and high-throughput protein tagging with SWAp-Tag (SWAT) libraries, this approach can be used to compare protein turnover across the proteome and to identify regulators of protein turnover genome-wide.


Sign in / Sign up

Export Citation Format

Share Document