leucine zipper
Recently Published Documents


TOTAL DOCUMENTS

2157
(FIVE YEARS 347)

H-INDEX

129
(FIVE YEARS 9)

2022 ◽  
Vol 177 ◽  
pp. 114463
Author(s):  
Xiao Li ◽  
Yiyao Hou ◽  
Mingna Li ◽  
Fan Zhang ◽  
Fengyan Yi ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Hong Wang ◽  
Yunting Zhang ◽  
Ayla Norris ◽  
Cai-Zhong Jiang

Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5′ leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.


Author(s):  
Michel Planat ◽  
Marcelo M. Amaral ◽  
Fang Fang ◽  
David Chester ◽  
Raymond Aschheim ◽  
...  

Transcription factors (TFs) are proteins that recognize specific DNA fragments in order to decode the genome and ensure its optimal functioning. TFs work at the local and global scales by specifying cell type, cell growth and death, cell migration, organization and timely tasks. We investigate the structure of DNA-binding motifs with the theory of finitely generated groups. The DNA ‘word’ in the binding domain -the motif- may be seen as the generator of a finitely generated group Fdna on four letters, the bases A, T, G and C. It is shown that, most of the time, the DNA-binding motifs have subgroup structure close to free groups of rank three or less, a property that we call ‘syntactical freedom’. Such a property is associated to the aperiodicity of the motif when it is seen as a substitution sequence. Examples are provided for the major families of TFs such as leucine zipper factors, zinc finger factors, homeo-domain factors, etc. We also discuss the exceptions to the existence of such a DNA syntactical rule and their functional role. This includes the TATA box in the promoter region of some genes, the single nucleotide markers (SNP) and the motifs of some genes of ubiquitous role in transcription and regulation.


Author(s):  
Jonathan S. Katz ◽  
Jeffrey D. Rothstein ◽  
Merit E. Cudkowicz ◽  
Angela Genge ◽  
Björn Oskarsson ◽  
...  

2022 ◽  
Vol 147 (1) ◽  
pp. 7-17
Author(s):  
Ying Yang ◽  
Xian-Ge Hu ◽  
Bingsong Zheng ◽  
Yue Li ◽  
Tongli Wang ◽  
...  

MicroRNAs (miRNAs) are short noncoding RNAs (20–25 nucleotides) that regulate gene expression posttranscriptionally. However, identification and characterization of miRNAs remain limited for conifer species. In this study, we applied transcriptome-wide miRNAs sequencing to a conifer species Platycladus orientalis, which is highly adaptable to a wide range of environmental adversities, including drought, barren soil, and mild salinity. A total of 17,181,542 raw reads were obtained from the Illumina sequencing platform; 31 conserved and 91 novel miRNAs were identified, and their unique characteristics were further analyzed. Ten randomly selected miRNAs were validated by quantificational real-time polymerase chain reaction. Through miRNA target predictions based on psRNATarget, 2331 unique mRNAs were predicted to be targets of P. orientalis miRNAs that involved in 187 metabolic pathways in KEGG database. These targets included not only important transcription factors (e.g., class III homeodomain leucine zipper targeted by por-miR166d) but also indispensable nontranscriptional factor proteins (i.e., por-miR482a-3p regulated nucleotide-binding site leucine-rich repeat protein). Interestingly, six miRNAs (por-miR16, -miR44, -miR60-5p, -miR69–3p, -miR166b-5p, and -miR395c) were found in adaptation-related pathways (e.g., drought), indicating their possible involved in this species’ stress-tolerance characteristics. The present study provided essential information for understanding the regulatory role of miRNAs in P. orientalis and sheds light on their possible use in tree improvement for stress tolerance.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Stefano Bruscoli ◽  
Carlo Riccardi ◽  
Simona Ronchetti

One of the human body’s initial responses to stress is the adrenal response, involving the release of mediators that include adrenaline and glucocorticoids (GC). GC are involved in controlling the inflammatory and immune response mechanisms. Of these, the molecular mechanisms that contribute to anti-inflammatory effects warrant more investigation. Previously, we found that GC induced GILZ (glucocorticoid-induced leucine zipper) quickly and widely in thymocytes, T lymphocytes, and other leukocytes. GILZ regulates the activation of cells and is an essential mediator of endogenous GC and the majority of GC anti-inflammatory effects. Further research in this regard could lead to the development of an anti-inflammatory treatment that yields the therapeutic outcomes of GC but without their characteristic adverse effects. Here, we examine the mechanisms of GILZ in the context of GC. Specifically, we review its role in the proliferation and differentiation of cells and in apoptosis. We also examine its involvement in immune cells (macrophages, neutrophils, dendritic cells, T and B lymphocytes), and in non-immune cells, including cancer cells. In conclusion, GILZ is an anti-inflammatory molecule that could mediate the immunomodulatory activities of GC, with less adverse effects, and could be a target molecule for designing new therapies to treat inflammatory diseases.


Author(s):  
Michel Planat ◽  
Marcelo Amaral ◽  
Fang Fang ◽  
David Chester ◽  
Raymond Aschheim ◽  
...  

Transcription factors (TFs) are proteins that recognize specific DNA fragments in order to decode the genome and ensure its optimal functioning. TFs work at the local and global scales by specifying cell type, cell growth and death, cell migration, organization and timely tasks. We investigate the structure of DNA-binding motifs with the theory of finitely generated groups. The DNA ‘word’ in the binding domain -the motif- may be seen as the generator of a finitely generated group Fdna on four letters, the bases A, T, G and C. It is shown that, most of the time, the DNA-binding motifs have subgroup structure close to free groups of rank three or less, a property that we call ‘syntactical freedom’. Such a property is associated to the aperiodicity of the motif when it is seen as a substitution sequence. Examples are provided for the major families of TFs such as leucine zipper factors, zinc finger factors, homeo-domain factors, etc. We also discuss the exceptions to the existence of such a DNA syntactical rule and their functional role. This includes the TATA box in the promoter region of some genes, the single nucleotide markers (SNP) and the motifs of some genes of ubiquitous role in transcription and regulation.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 684
Author(s):  
Han Wang ◽  
Wenna Shao ◽  
Min Yan ◽  
Ye Xu ◽  
Shaohua Liu ◽  
...  

Class III homeodomain-leucine zipper (HD-ZIP III) genes encode plant-specific transcription factors that play pivotal roles in plant growth and development. There is no systematic report on HD-ZIP III members in Brassica plants and their responses to stress are largely unknown. In this study, a total of 10, 9 and 16 HD-ZIP III genes were identified from B. rapa, B. oleracea and B. napus, respectively. The phylogenetic analysis showed that HD-ZIP III proteins were grouped into three clades: PHB/PHV, REV and CNA/HB8. Genes in the same group tended to have similar exon–intron structures. Various phytohormone-responsive elements and stress-responsive elements were detected in the promoter regions of HD-ZIP III genes. Gene expression levels in different tissues, as well as under different stress conditions, were investigated using public transcription profiling data. The HD-ZIP III genes were constitutively expressed among all the tested tissues and were highly accumulated in root and stem. In B. rapa, only one BrREV gene especially responded to heat stress, BrPHB and BrREV members were downregulated upon cold stress and most HD-ZIP III genes exhibited divergent responses to drought stress. In addition, we investigated the genetic variation at known miR165/166 complementary sites of the identified HD-ZIP III genes and found one single nucleotide polymorphism (SNP) in PHB members and two SNPs in REV members, which were further confirmed using Sanger sequencing. Taken together, these results provide information for the genome-wide characterization of HD-ZIP III genes and their stress response diversity in Brassica species.


2021 ◽  
Author(s):  
Ming Yu ◽  
Xiaolong Wang ◽  
Hongwei Zhou ◽  
Yang Yu ◽  
Fan Wei ◽  
...  

Abstract Improvement of yield-traits is one of the predominating objectives in wheat breeding. Homeodomain-leucine zipper (HD-ZIP) transcription factor plays significant roles in plant growth and development. The TaHDZ34 (A, B and D sub-genomics) genes consisting of three members of the HD-ZIP IV transcription factor gene subfamily in wheat (Triticum aestivum L.) were cloned. Two haplotypes of TaHDZ34-7A, TaHDZ34-7B or TaHDZ34-7D were respectively identified after the sequence polymorphism analysis, and three functional molecular markers were developed. The TaHDZ34 genes were divided into eight haplotype combinations. Association analysis and distinct population validation jointly indicated that TaHDZ34 had the function of modulating grain number per spike, effective spikelet number per spike, 1,000 kernel weight, and flag leaf area per plant in wheat. Among all haplotype combinations of TaHDZ34, Hap-ABD was the most excellent one. Subcelluar localization showed that TaHDZ34-7A was localized in the nucleus. Interaction proteins of TaHDZ34-7A protein proved to be involved in protein synthesis/degradation, energy production and transportation, and photosynthesis processes. Geographic distribution and frequencies of TaHDZ34 haplotype combinations suggested that the Hap-Abd and Hap-AbD were preferential selection in Chinese wheat breeding programs. The high-yield related haplotype combinations Hap-ABD of TaHDZ34 provided beneficial genetic resources for marker-assisted selection of new wheat cultivars.


Sign in / Sign up

Export Citation Format

Share Document