kinase activation
Recently Published Documents


TOTAL DOCUMENTS

2974
(FIVE YEARS 229)

H-INDEX

149
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Khawar Ali ◽  
Wenjuan Li ◽  
Yaopeng Qin ◽  
Shanshan Wang ◽  
Lijie Feng ◽  
...  

Plants acquire the ability to adapt to the environment using transmembrane receptor-like kinases (RLKs) to sense the challenges from their surroundings and respond appropriately. RLKs perceive a variety of ligands through their variable extracellular domains (ECDs) that activate the highly conserved intracellular kinase domains (KDs) to control distinct biological functions through a well-developed downstream signaling cascade. A new study has emerged that brassinosteroid-insensitive 1 (BRI1) family and excess microsporocytes 1 (EMS1) but not GASSHO1 (GSO1) and other RLKs control distinct biological functions through the same signaling pathway, raising a question how the signaling pathway represented by BRI1 is specified. Here, we confirm that BRI1-KD is not functionally replaceable by GSO1-KD since the chimeric BRI1-GSO1 cannot rescue bri1 mutants. We then identify two subdomains S1 and S2. BRI1 with its S1 and S2 substituted by that of GSO1 cannot rescue bri1 mutants. Conversely, chimeric BRI1-GSO1 with its S1 and S2 substituted by that of BRI1 can rescue bri1 mutants, suggesting that S1 and S2 are the sufficient requirements to specify the signaling function of BRI1. Consequently, all the other subdomains in the KD of BRI1 are functionally replaceable by that of GSO1 although the in vitro kinase activities vary after replacements, suggesting their functional robustness and mutational plasticity with diverse kinase activity. Interestingly, S1 contains αC-β4 loop as an allosteric hotspot and S2 includes kinase activation loop, proposedly regulating kinase activities. Further analysis reveals that this specific function requires β4 and β5 in addition to αC-β4 loop in S1. We, therefore, suggest that BRI1 specifies its kinase function through an allosteric regulation of these two subdomains to control its distinct biological functions, providing a new insight into the kinase evolution.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Jeong-In Park ◽  
Kyung-Hee Song ◽  
Seong-Mook Kang ◽  
Jeeyong Lee ◽  
Seong-Jun Cho ◽  
...  

Our previous work demonstrated that (E)-N-benzyl-6-(2-(3, 4-dihydroxybenzylidene) hydrazinyl)-N-methylpyridine-3-sulfonamide (BHMPS), a novel synthetic inhibitor of Rab27aSlp(s) interaction, suppresses tumor cell invasion and metastasis. Here, we aimed to further investigate the mechanisms of action and biological significance of BHMPS. BHMPS decreased the expression of epithelial-mesenchymal transition transcription factors through inhibition of focal adhesion kinase and c-Jun N-terminal kinase activation, thereby reducing the migration and invasion of breast cancer. Additionally, knockdown of Rab27a inhibited tumor migration, with changes in related signaling molecules, whereas overexpression of Rab27a reversed this phenomenon. BHMPS effectively prevented the interaction of Rab27a and its effector Slp4, which was verified by co-localization, immunoprecipitation, and in situ proximity ligation assays. BHMPS decreased the secretion of epidermal growth factor receptor and fibronectin by interfering with vesicle trafficking, as indicated by increased perinuclear accumulation of CD63-positive vesicles. Moreover, administration of BHMPS suppressed tumor growth in Rab27a-overexpressing MDA-MB-231 xenograft mice. These findings suggest that BHMPS may be a promising candidate for attenuating tumor migration and invasion by blocking Rab27a-mediated exocytosis.


2022 ◽  
Author(s):  
Mithu Baidya ◽  
Madhu Chaturvedi ◽  
Hemlata Dwivedi-Agnihotri ◽  
Ashutosh Ranjan ◽  
Dominic Devost ◽  
...  

Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) is a primary determinant of β-arrestin (βarr) recruitment and trafficking. For several GPCRs, such as the vasopressin type II receptor (V2R), which exhibit high affinity for βarrs, agonist-stimulation first drives the translocation of βarrs to the plasma membrane, followed by endosomal trafficking. We previously found that mutation of a single phosphorylation site in V2R (i.e., V2RT360A) results in near-complete loss of βarr translocation to endosomes although βarrs are robustly recruited to the plasma membrane. Here, we show that a synthetic intrabody referred to as intrabody30 (Ib30), which selectively recognizes an active-like βarr1 conformation, rescues endosomal translocation of βarr1 for V2RT360A. In addition, Ib30 also rescues agonist-induced ERK1/2 MAP kinase activation for V2RT360A to levels similar to that of the wild-type V2R. Molecular dynamics simulations reveal that Ib30 binding promotes active-like conformation in βarr1 with respect to the inter-domain rotation. Interestingly, we also observe that Ib30 enhances the interaction of βarr1 with β2-adaptin, which provides a mechanistic basis for the ability of Ib30 to promote endosomal trafficking of βarr1. Taken together, our data provide a novel mechanism to positively modulate the receptor-transducer-effector axis for GPCRs using intrabodies, which can potentially be integrated in the current paradigm of GPCR-targeted drug discovery.


Author(s):  
Colin P. Tang ◽  
Owen Clark ◽  
John R. Ferrarone ◽  
Carl Campos ◽  
Alshad S. Lalani ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13122
Author(s):  
Dalila Boi ◽  
Fani Souvalidou ◽  
Davide Capelli ◽  
Federica Polverino ◽  
Grazia Marini ◽  
...  

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingchun Du ◽  
Yougui Xiang ◽  
Hua Liu ◽  
Shuzhen Liu ◽  
Ashwani Kumar ◽  
...  

AbstractReceptor-interacting protein kinase 1 (RIPK1) is a key regulator of inflammation and cell death. Many sites on RIPK1, including serine 25, are phosphorylated to inhibit its kinase activity and cell death. How these inhibitory phosphorylation sites are dephosphorylated is poorly understood. Using a sensitized CRISPR whole-genome knockout screen, we discover that protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is required for RIPK1-dependent apoptosis and type I necroptosis. Mechanistically, PPP1R3G recruits its catalytic subunit protein phosphatase 1 gamma (PP1γ) to complex I to remove inhibitory phosphorylations of RIPK1. A PPP1R3G mutant which does not bind PP1γ fails to rescue RIPK1 activation and cell death. Furthermore, chemical prevention of RIPK1 inhibitory phosphorylations or mutation of serine 25 of RIPK1 to alanine largely restores cell death in PPP1R3G-knockout cells. Finally, Ppp1r3g−/− mice are protected from tumor necrosis factor-induced systemic inflammatory response syndrome, confirming the important role of PPP1R3G in regulating apoptosis and necroptosis in vivo.


Author(s):  
Phanthavong Vansana ◽  
Kae Kakura ◽  
Yusuke Taniguchi ◽  
Kei Egashira ◽  
Etsuko Matsuzaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document