scholarly journals Pharmacokinetics and pharmacodynamics of ampreloxetine, a novel, selective norepinephrine reuptake inhibitor, in symptomatic neurogenic orthostatic hypotension

Author(s):  
Arthur Lo ◽  
Lucy Norcliffe-Kaufmann ◽  
Ross Vickery ◽  
David Bourdet ◽  
Jitendra Kanodia

Abstract Purpose Ampreloxetine is a novel, selective, long-acting norepinephrine reuptake (NET) inhibitor being investigated as a once-daily oral treatment for symptomatic neurogenic orthostatic hypotension (nOH) in patients with autonomic synucleinopathies. The purpose of this study was to characterize the pharmacokinetic and pharmacodynamic profiles of ampreloxetine in this target population. Methods Patients with nOH were enrolled in a multicenter, phase II clinical trial of ampreloxetine (NCT02705755). They received escalating doses over 5 days in the clinical research unit, followed by 20 weeks of open-label treatment and then a 4-week withdrawal. As neurochemical biomarkers of NET inhibition, we assayed plasma concentrations of norepinephrine (NE) and its main intraneuronal metabolite 3,4-dihydroxyphenylglycol (DHPG) pre- and post-ampreloxetine. Results Thirty-four patients with nOH were enrolled. Plasma ampreloxetine concentrations increased with repeated escalating doses, with peak concentrations observed 6–9 h post-drug administration. The median ampreloxetine dose in the 20-week treatment phase was 10 mg once daily. Plasma ampreloxetine concentrations reached steady state by 2 weeks, with stable plasma levels over 24 h. No influence of age or renal function on ampreloxetine plasma concentrations was observed. On treatment, compared to baseline, plasma NE significantly increased by 71% (p < 0.005), plasma DHPG significantly declined by 22% (p < 0.05), and the NE:DHPG ratio significantly increased (p < 0.001). Conclusions Persistent elevation of plasma NE levels accompanied by reduced DHPG levels after ampreloxetine suggests reduced neuronal reuptake and metabolism of NE in postganglionic efferent sympathetic neurons. The findings are consistent with long-lasting NET inhibition, which may increase vasoconstrictor tone, supporting once-daily ampreloxetine dosing in patients with nOH.

2019 ◽  
Vol 71 (4) ◽  
pp. 982-988 ◽  
Author(s):  
Qing Ma ◽  
Andrew J Ocque ◽  
Gene D Morse ◽  
Chelsea Sanders ◽  
Alina Burgi ◽  
...  

Abstract Background Tenofovir alafenamide fumarate (TAF) co-formulated with elvitegravir (EVG; E), cobicistat (C), and emtricitabine (F), a recommended antiretroviral regimen, was evaluated for distribution and antiviral activity in cerebrospinal fluid (CSF) as well as neurocognitive (NC) performance change in participants switching from E/C/F/tenofovir disoproxil fumarate (TDF) to E/C/F/TAF. Methods This was a 24-week, single-arm, open-label study in treatment-experienced adults living with human immunodeficiency virus (HIV). Nine participants switched from E/C/F/TDF (150/150/200/300 mg once daily) to E/C/F/TAF (150/150/200/10 mg once daily) at week 12. CSF and total plasma concentrations of EVG, TDF, TAF, tenofovir (TFV), and HIV RNA levels were measured at baseline and week 24. NC performance was estimated by the Montreal Cognitive Assessment. Results EVG concentrations in CSF and the CSF:plasma ratio remained stable (P = .203) over time. Following the switch, TFV concentrations in CSF and plasma declined (P = .004), although the TFV CSF:plasma ratio increased (P = .004). At week 24, median TAF plasma concentration was 11.05 ng/mL (range, 2.84–147.1 ng/mL) 2 hours postdose but was below assay sensitivity 6 hours after dosing. TAF was below assay sensitivity in all CSF specimens. HIV RNA was ≤40 copies/mL in all CSF and plasma specimens. Three participants (33%) had NC impairment at baseline and 2 (22%) remained impaired at week 24. Conclusions Switch to E/C/F/TAF was associated with reductions in TFV concentrations in CSF but stable EVG concentrations that exceeded the 50% inhibitory concentration for wild-type HIV, suggesting that EVG achieves therapeutic concentrations in the central nervous system. No virologic failure or significant NC changes were detected following the switch. Clinical Trials Registration NCT02251236.


2016 ◽  
Vol 175 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Gudmundur Johannsson ◽  
Hans Lennernäs ◽  
Claudio Marelli ◽  
Kevin Rockich ◽  
Stanko Skrtic

Objective Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure−time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5–20mg and assess intrasubject variability. Methods Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20−55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography−tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration−time profiles. Results DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0−4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration−time curve (AUC)0−∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. Conclusions DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional – an important consideration when managing intercurrent illness in patients with adrenal insufficiency.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15060-e15060
Author(s):  
Christopher G. C. A. Jackson ◽  
Noelyn Anne Hung ◽  
David Cutler ◽  
Douglas Kramer ◽  
Jay Zhi ◽  
...  

e15060 Background: Oral co-administration of encequidar (a selective, minimally absorbed oral P-gp inhibitor) 12.9 mg with paclitaxel (a P-gp substrate) 205 mg/m2 for 3 consecutive days per week can achieve comparable AUC exposure to that of IV paclitaxel 80mg/m2 with a significantly lowered Cmax and has been demonstrated its improved tumor response with reduced neuropathy compared to IV paclitaxel 175 mg/m2 Q3W for the treatment of patients with metastatic breast cancer. Because of its pharmacology as an inhibitor of P-gp, encequidar may increase the bioavailability of orally administered drugs that are substrates of P-gp, such as dabigatran etexilate. Methods: To determine the effect of a therapeutic dose and regimen (3 once-daily 12.9 mg doses) of encequidar on the single dose PK of dabigatran etexilate, an open-label, fixed-sequence study was performed in 20 healthy male subjects. Participants received a single oral dose of dabigatran etexilate 75 mg on Day 1 of Treatment Period 1 (reference) and, after a washout period of at least 7 days, on Days 3, 17 and 31 of Treatment Period 2, after receiving once-daily oral doses 12.9 mg encequidar on Days 1 to 3 of Period 2. The PK sampling for determination of plasma concentrations of total and unconjugated dabigatran lasted up to 48 hours postdose of each dabigatran etexilate dosr. Results: Mean AUC and Cmax values for dabigatran were both increased ̃ 95% without changing t½ when dabigatran etexilate was administered 1 hour post the 3rd dose of 12.9 mg encequidar compared to when dabigatran etexilate was administered alone. When dabigatran etexilate was administered 2 weeks after encequidar administration, no apparent differences in dabigatran AUC or Cmax were detected compared to those of dabigatran etexilate alone. When administered 4 weeks after discontinuation of encequidar, dabigatran AUC and Cmax were both slightly lower than Reference dabigatran etexilate (̃ 25% lower for AUC and 34% lower for Cmax). Both unconjugated and total dabigatran PK data were analyzed and shown to be similar. Encequidar and dabigatran etexilate were well tolerated and had acceptable safety findings in this healthy subject population. Conclusions: Concomitant dosing of encequidar with dabigatran etexilate resulted in < 2-fold increase in exposure to dabigatran, which had abated by the time of the first re-test, 14 days after the last dose of encequidar. The observed changes do not warrant dose adjustment of dabigatran etexilate when administered with encequidar. Clinical trial information: ACTRN12618000791235.


2018 ◽  
Vol 14 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Iain C. Macdougall ◽  
Tadao Akizawa ◽  
Jeffrey S. Berns ◽  
Thomas Bernhardt ◽  
Thilo Krueger

Background and objectivesThe efficacy and safety of molidustat, a hypoxia-inducible factor-prolyl hydroxylase inhibitor, have been evaluated in three 16-week, phase 2b studies in patients with CKD and anemia who are not on dialysis (DaIly orAL treatment increasing endOGenoUs Erythropoietin [DIALOGUE] 1 and 2) and in those who are on dialysis (DIALOGUE 4).Design, setting, participants, & measurementsDIALOGUE 1 was a placebo-controlled, fixed-dose trial (25, 50, and 75 mg once daily; 25 and 50 mg twice daily). DIALOGUE 2 and 4 were open-label, variable-dose trials, in which treatment was switched from darbepoetin (DIAGLOGUE 2) or epoetin (DIALOGUE 4) to molidustat or continued with the original agents. Starting molidustat ranged between 25–75 and 25–150 mg daily in DIAGLOGUE 2 and 4, respectively, and could be titrated to maintain hemoglobin levels within predefined target ranges. The primary end point was the change in hemoglobin level between baseline and the mean value from the last 4 weeks of the treatment period.ResultsIn DIAGLOGUE 1 (n=121), molidustat treatment was associated with estimated increases in mean hemoglobin levels of 1.4–2.0 g/dl. In DIAGLOGUE 2 (n=124), hemoglobin levels were maintained within the target range after switching to molidustat, with an estimated difference in mean change in hemoglobin levels between molidustat and darbepoetin treatments of up to 0.6 g/dl. In DIAGLOGUE 4 (n=199), hemoglobin levels were maintained within the target range after switching to molidustat 75 and 150 mg, with estimated differences in mean change between molidustat and epoetin treatment of −0.1 and 0.4 g/dl. Molidustat was generally well tolerated, and most adverse events were mild or moderate in severity.ConclusionsThe overall phase 2 efficacy and safety profile of molidustat in patients with CKD and anemia enables the progression of its development into phase 3.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Matthew P. Kosloski ◽  
Weihan Zhao ◽  
Armen Asatryan ◽  
Jens Kort ◽  
Pierre Geoffroy ◽  
...  

ABSTRACT The combination of glecaprevir (formerly ABT-493), a nonstructural protein 3/4A (NS3/4A) protease inhibitor, and pibrentasvir (formerly ABT-530), an NS5A protein inhibitor, is being developed as treatment for HCV genotype 1 to 6 infection. The pharmacokinetics, pharmacodynamics, safety, and tolerability of methadone or buprenorphine-naloxone when coadministered with the glecaprevir-pibrentasvir combination in HCV-negative subjects on stable opioid maintenance therapy were investigated in a phase 1, single-center, two-arm, multiple-dose, open-label sequential study. Subjects received methadone (arm 1) or buprenorphine-naloxone (arm 2) once daily (QD) per their existing individual prescriptions alone (days 1 to 9) and then in combination with glecaprevir at 300 mg QD and pibrentasvir at 120 mg QD (days 10 to 16) each morning. Dose-normalized exposures were similar with and without glecaprevir and pibrentasvir for (R)- and (S)-methadone (≤5% difference) and for buprenorphine and naloxone (≤24% difference); the norbuprenorphine area under the curve was 30% higher with glecaprevir and pibrentasvir, consistent with maximum and trough plasma concentrations that increased by 21% to 25%. No changes in pupil response, short opiate withdrawal scale score, or desire for drugs questionnaire were observed when glecaprevir and pibrentasvir were added to methadone or buprenorphine-naloxone therapy. No dose adjustment is required when glecaprevir and pibrentasvir are coadministered with methadone or buprenorphine-naloxone.


Sign in / Sign up

Export Citation Format

Share Document