scholarly journals Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise

2002 ◽  
Vol 289 (1) ◽  
pp. 629-647 ◽  
Author(s):  
Dirk V. Arnold ◽  
Hans-Georg Beyer
2019 ◽  
Vol 27 (4) ◽  
pp. 699-725 ◽  
Author(s):  
Hao Wang ◽  
Michael Emmerich ◽  
Thomas Bäck

Generating more evenly distributed samples in high dimensional search spaces is the major purpose of the recently proposed mirrored sampling technique for evolution strategies. The diversity of the mutation samples is enlarged and the convergence rate is therefore improved by the mirrored sampling. Motivated by the mirrored sampling technique, this article introduces a new derandomized sampling technique called mirrored orthogonal sampling. The performance of this new technique is both theoretically analyzed and empirically studied on the sphere function. In particular, the mirrored orthogonal sampling technique is applied to the well-known Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The resulting algorithm is experimentally tested on the well-known Black-Box Optimization Benchmark (BBOB). By comparing the results from the benchmark, mirrored orthogonal sampling is found to outperform both the standard CMA-ES and its variant using mirrored sampling.


2003 ◽  
Vol 11 (2) ◽  
pp. 111-127 ◽  
Author(s):  
Dirk V. Arnold ◽  
Hans-Georg Beyer

It is known that, in the absence of noise, no improvement in local performance can be gained from retaining candidate solutions other than the best one. Yet, it has been shown experimentally that, in the presence of noise, operating with a non-singular population of candidate solutions can have a marked and positive effect on the local performance of evolution strategies. So as to determine the reasons for the improved performance, we have studied the evolutionary dynamics of the (μ, λ)-ES in the presence of noise. Considering a simple, idealized environment, we have developed a moment-based approach that uses recent results involving concomitants of selected order statistics. This approach yields an intuitive explanation for the performance advantage of multi-parent strategies in the presence of noise. It is then shown that the idealized dynamic process considered does bear relevance to optimization problems in high-dimensional search spaces.


Sign in / Sign up

Export Citation Format

Share Document