grover’s search algorithm
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2433
Author(s):  
Aritra Sarkar ◽  
Zaid Al-Ars ◽  
Carmen G. Almudever ◽  
Koen L. M. Bertels

With small-scale quantum processors transitioning from experimental physics labs to industrial products, these processors in a few years are expected to scale up and be more robust for efficiently computing important algorithms in various fields. In this paper, we propose a quantum algorithm to address the challenging field of data processing for genome sequence reconstruction. This research describes an architecture-aware implementation of a quantum algorithm for sub-sequence alignment. A new algorithm named QiBAM (quantum indexed bidirectional associative memory) is proposed, which uses approximate pattern-matching based on Hamming distances. QiBAM extends the Grover’s search algorithm in two ways, allowing: (1) approximate matches needed for read errors in genomics, and (2) a distributed search for multiple solutions over the quantum encoding of DNA sequences. This approach gives a quadratic speedup over the classical algorithm. A full implementation of the algorithm is provided and verified using the OpenQL compiler and QX Simulator framework. Our implementation represents a first exploration towards a full-stack quantum accelerated genome sequencing pipeline design.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi-Ting Chen ◽  
Collin Farquhar ◽  
Robert M. Parrish

AbstractIn this work, we present an efficient rank-compression approach for the classical simulation of Kraus decoherence channels in noisy quantum circuits. The approximation is achieved through iterative compression of the density matrix based on its leading eigenbasis during each simulation step without the need to store, manipulate, or diagonalize the full matrix. We implement this algorithm using an in-house simulator and show that the low-rank algorithm speeds up simulations by more than two orders of magnitude over existing implementations of full-rank simulators, and with negligible error in the noise effect and final observables. Finally, we demonstrate the utility of the low-rank method as applied to representative problems of interest by using the algorithm to speed up noisy simulations of Grover’s search algorithm and quantum chemistry solvers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valentin Gebhart ◽  
Luca Pezzè ◽  
Augusto Smerzi

AbstractDespite intensive research, the physical origin of the speed-up offered by quantum algorithms remains mysterious. No general physical quantity, like, for instance, entanglement, can be singled out as the essential useful resource. Here we report a close connection between the trace speed and the quantum speed-up in Grover’s search algorithm implemented with pure and pseudo-pure states. For a noiseless algorithm, we find a one-to-one correspondence between the quantum speed-up and the polarization of the pseudo-pure state, which can be connected to a wide class of quantum statistical speeds. For time-dependent partial depolarization and for interrupted Grover searches, the speed-up is specifically bounded by the maximal trace speed that occurs during the algorithm operations. Our results quantify the quantum speed-up with a physical resource that is experimentally measurable and related to multipartite entanglement and quantum coherence.


Author(s):  
Sergey Ulyanov ◽  
Andrey Reshetnikov ◽  
Olga Tyatyushkina

Models of Grover’s search algorithm is reviewed to build the foundation for the other algorithms. Thereafter, some preliminary modifications of the original algorithms by others are stated, that increases the applicability of the search procedure. A general quantum computation on an isolated system can be represented by a unitary matrix. In order to execute such a computation on a quantum computer, it is common to decompose the unitary into a quantum circuit, i.e., a sequence of quantum gates that can be physically implemented on a given architecture. There are different universal gate sets for quantum computation. Here we choose the universal gate set consisting of CNOT and single-qubit gates. We measure the cost of a circuit by the number of CNOT gates as they are usually more difficult to implement than single qubit gates and since the number of single-qubit gates is bounded by about twice the number of CNOT’s.


2020 ◽  
Vol 5 (4) ◽  
pp. 045011
Author(s):  
Ki Hyuk Yee ◽  
Jeongho Bang ◽  
Paul M Alsing ◽  
Warner A Miller ◽  
Doyeol Ahn

Sign in / Sign up

Export Citation Format

Share Document