Evidence for the preferential localization of Glutamate Receptor-1 subunits of AMPA receptors to the dendritic spines of medium spiny neurons in rat striatum

Neuroscience ◽  
1998 ◽  
Vol 83 (3) ◽  
pp. 749-761 ◽  
Author(s):  
Q Chen ◽  
L Veenman ◽  
K Knopp ◽  
Z Yan ◽  
L Medina ◽  
...  
2017 ◽  
Vol 116 ◽  
pp. 224-232 ◽  
Author(s):  
Craig T. Werner ◽  
Conor H. Murray ◽  
Jeremy M. Reimers ◽  
Niravkumar M. Chauhan ◽  
Kenneth K.Y. Woo ◽  
...  

2015 ◽  
Vol 357 ◽  
pp. e266
Author(s):  
Y. Funamizu ◽  
H. Nishijima ◽  
T. Ueno ◽  
S. Ueno ◽  
S. Yagihashi ◽  
...  

Author(s):  
Richard J. Beninger

Mechanisms of dopamine-mediated incentive learning explains how sensory events, resulting from an animal’s movement and the environment, activate cortical glutamatergic projections to dendritic spines of striatal medium spiny neurons to initiate a wave of phosphorylation. If no rewarding stimulus is encountered, a subsequent wave of phosphatase activity undoes the phosphorylation. If a rewarding stimulus is encountered, dopamine initiates a cascade of events in D1 receptor-expressing medium spiny neurons that may prevent the phosphatase effects and work synergistically with signaling events produced by glutamate. As a result, corticostriatal synapses have a greater impact on response systems; this may be part of the mechanism of incentive learning. Dopamine acting on dendritic spines of D2 receptor-expressing medium spiny neurons may prevent synaptic strengthening by inhibiting adenosine signaling; these synapses may be weakened through mechanisms involving endocannabinoids. When dopamine concentrations drop, e.g. during negative prediction errors, the opposite may occur, producing inverse incentive learning.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188404 ◽  
Author(s):  
Mehrak Javadi-Paydar ◽  
Robert F. Roscoe ◽  
Adam R. Denton ◽  
Charles F. Mactutus ◽  
Rosemarie M. Booze

Neuroscience ◽  
2018 ◽  
Vol 380 ◽  
pp. 146-151 ◽  
Author(s):  
Dian Shi ◽  
Joshua W. Chang ◽  
Jaimin Choi ◽  
Bronwen Connor ◽  
Simon J. O'Carroll ◽  
...  

1997 ◽  
Vol 78 (3) ◽  
pp. 1248-1255 ◽  
Author(s):  
Masashi Umemiya ◽  
Lynn A. Raymond

Umemiya, Masashi and Lynn A. Raymond. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J. Neurophysiol. 78: 1248–1255, 1997. γ-aminobutyric acid (GABA)-containing medium spiny neurons constitute ∼90% of the neuronal population in the neostriatum (caudate and putamen) and play an important role in motor programming. Cortical glutamatergic afferents provide the main excitatory drive for these neurons, whereas nigral dopaminergic neurons play a crucial role in regulating their activity. To further investigate the mechanisms underlying the dopaminergic modulation of medium spiny neuronal activity, we tested the effect of dopamine receptor agonists on excitatory synaptic transmission recorded from these neurons. Excitatory postsynaptic currents (EPSCs) were evoked by local stimulation and recorded from medium spiny neurons in postnatal rat striatal thin brain slices. Recordings were made using the whole cell patch-clamp technique under voltage clamp and conditions that selected for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate- and kainate-type glutamate receptor-mediated components of the EPSC. Incubation of slices in 10 μM dopamine resulted in a 33 ± 11% (mean ± SE) decrease in the amplitude of evoked EPSCs, an effect that developed during seconds. The relative variability in amplitude of dopamine's effects on medium spiny neuron EPSCs may reflect activation of different receptor subtypes with opposing effects. In contrast to the results with dopamine, incubation of slices in SKF 38393, a D1-type dopamine receptor selective agonist, resulted in dose-dependent potentiation of the medium spiny neuron EPSC that developed during several minutes. At a concentration of 5 μM, SKF 38393 resulted in a 29 ± 4.5% increase in EPSC amplitude, an effect that was blocked by preincubation with the D1-selective antagonist, SCH 23390 (10 μM). On the other hand, 5 μM SKF 38393 had no apparent effect on medium spiny neuron currents activated by exogenous application of glutamate or kainate. However, because of the inherent limitations of rapid agonist perfusion in the brain slice preparation (caused by slow agonist diffusion and rapid glutamate receptor desensitization) and because of anatomic evidence that colocalizes D1 and glutamate receptors to medium spiny neuron dendrites, our results leave open the possibility that the effect of D1 receptor activation on the EPSC is mediated via modulation of postsynaptic glutamate receptor responsiveness. The significant potentiation by D1 receptor agonists of EPSC amplitude at the cortico-striatal medium spiny synapse that we observed, in part, may underlie the role of D1 receptors in facilitating medium spiny neuronal firing, with implications for understanding regulation of movement.


2018 ◽  
Author(s):  
Daniel M. Kircher ◽  
Heather Aziz ◽  
Regina A. Mangieri ◽  
Richard A. Morrisett

ABSTRACTNucleus accumbens dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) have been implicated in the formation of dependence to many drugs of abuse including alcohol. Previous studies have revealed that acute alcohol exposure suppresses glutamatergic signaling within the accumbens and repeated alcohol exposure enhances glutamatergic signaling. D1-MSNs receive glutamatergic input from several brain regions and it is not currently known how individual inputs onto D1-MSNs are altered by alcohol experience. To Address this, we used virally mediated expression of Channelrhodopsin (ChR2) in ventral hippocampal (vHipp) glutamate neurons to selectively activate vHipp to D1-MSN synapses and compared synaptic adaptations in response to low and high alcohol experiencein vitroandin vivo. Alcohol experience enhanced glutamatergic activity and abolished long-term depression (LTD) at ventral hippocampal (vHipp) to D1-MSN synapses. Following chronic alcohol experience GluA2-lacking AMPA receptors, which are Ca-permeable, were inserted into vHipp to D1-MSN synapses. These alcohol-induced adaptations of glutamatergic signaling occurred at lower levels of exposure than previously reported. The loss of LTD expression and enhancement in glutamatergic signaling from the vHipp to D1-MSNs in the nucleus accumbens may play a critical role in the formation of alcohol dependence and enhancements in ethanol consumption. Reversal of alcohol-induced insertion of Ca-permeable AMPA receptors and enhancement of glutamatergic activity at vHipp to D1-MSNs presents potential targets for intervention during early exposure to alcohol.SIGNIFICANCE STATEMENTThe work presented here is the first to elucidate how an individual glutamatergic input onto D1-MSNs of the accumbens shell (shNAc) are altered by repeated ethanol exposure. Our findings suggest that glutamatergic input from the ventral hippocampus (vHipp) onto D1-MSNs is enhanced following drinking in a two-bottle choice (2BC) paradigm and is further enhanced by chronic intermittent ethanol (CIE) vapor exposure which escalated volitional ethanol intake. A critical finding was the insertion of Ca-permeable AMPA receptors into vHipp-shNAc D1-MSN synapses following CIE exposure, and more importantly following ethanol consumption in the absence of vapor exposure. These findings suggest that enhancements of glutamatergic input from the vHipp and insertion of Ca-permeable AMPARs play a role in the formation of ethanol dependence.


Sign in / Sign up

Export Citation Format

Share Document