scholarly journals Dopaminergic Modulation of Excitatory Postsynaptic Currents in Rat Neostriatal Neurons

1997 ◽  
Vol 78 (3) ◽  
pp. 1248-1255 ◽  
Author(s):  
Masashi Umemiya ◽  
Lynn A. Raymond

Umemiya, Masashi and Lynn A. Raymond. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J. Neurophysiol. 78: 1248–1255, 1997. γ-aminobutyric acid (GABA)-containing medium spiny neurons constitute ∼90% of the neuronal population in the neostriatum (caudate and putamen) and play an important role in motor programming. Cortical glutamatergic afferents provide the main excitatory drive for these neurons, whereas nigral dopaminergic neurons play a crucial role in regulating their activity. To further investigate the mechanisms underlying the dopaminergic modulation of medium spiny neuronal activity, we tested the effect of dopamine receptor agonists on excitatory synaptic transmission recorded from these neurons. Excitatory postsynaptic currents (EPSCs) were evoked by local stimulation and recorded from medium spiny neurons in postnatal rat striatal thin brain slices. Recordings were made using the whole cell patch-clamp technique under voltage clamp and conditions that selected for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate- and kainate-type glutamate receptor-mediated components of the EPSC. Incubation of slices in 10 μM dopamine resulted in a 33 ± 11% (mean ± SE) decrease in the amplitude of evoked EPSCs, an effect that developed during seconds. The relative variability in amplitude of dopamine's effects on medium spiny neuron EPSCs may reflect activation of different receptor subtypes with opposing effects. In contrast to the results with dopamine, incubation of slices in SKF 38393, a D1-type dopamine receptor selective agonist, resulted in dose-dependent potentiation of the medium spiny neuron EPSC that developed during several minutes. At a concentration of 5 μM, SKF 38393 resulted in a 29 ± 4.5% increase in EPSC amplitude, an effect that was blocked by preincubation with the D1-selective antagonist, SCH 23390 (10 μM). On the other hand, 5 μM SKF 38393 had no apparent effect on medium spiny neuron currents activated by exogenous application of glutamate or kainate. However, because of the inherent limitations of rapid agonist perfusion in the brain slice preparation (caused by slow agonist diffusion and rapid glutamate receptor desensitization) and because of anatomic evidence that colocalizes D1 and glutamate receptors to medium spiny neuron dendrites, our results leave open the possibility that the effect of D1 receptor activation on the EPSC is mediated via modulation of postsynaptic glutamate receptor responsiveness. The significant potentiation by D1 receptor agonists of EPSC amplitude at the cortico-striatal medium spiny synapse that we observed, in part, may underlie the role of D1 receptors in facilitating medium spiny neuronal firing, with implications for understanding regulation of movement.

2005 ◽  
Vol 93 (2) ◽  
pp. 1119-1126 ◽  
Author(s):  
Fatuel Tecuapetla ◽  
Luis Carrillo-Reid ◽  
Jaime N. Guzmán ◽  
Elvira Galarraga ◽  
José Bargas

This work investigated if diverse properties could be ascribed to evoked inhibitory postsynaptic currents (IPSCs) recorded on rat neostriatal neurons when field stimulation was delivered at two different locations: the globus pallidus (GP) and the neostriatum (NS). Previous work stated that stimulation in the GP could antidromically excite projection axons from medium spiny neurons. This maneuver would predominantly activate the inhibitory synapses that interconnect spiny cells. In contrast, intrastriatal stimulation would preferentially activate inhibitory synapses provided by interneurons. This study shows that, in fact, intensity-amplitude experiments are able to reveal different properties for IPSCs evoked from these two locations (GP and NS). In addition, while all IPSCs evoked from the GP were always sensitive to ω-conotoxin GVIA (CaV2.22.2 or N-channel blocker), one-half of the inhibition evoked from the NS exhibited little sensitivity to ω-conotoxin GVIA. Characteristically, all ω-conotoxin GVIA–insensitive IPSCs exhibited strong paired pulse depression, whereas ω-conotoxin GVIA–sensitive IPSCs evoked from either the GP or the NS could exhibit short-time depression or facilitation. ω-Agatoxin TK (CaV2.12.1+ or P/Q-channel blocker) blocked IPSCs evoked from both locations. Therefore 1) distinct inhibitory inputs onto projection neostriatal cells can be differentially stimulated with field electrodes; 2) N-type Ca2+ channels are not equally expressed in inhibitory terminals activated in the NS; and 3) synapses that interconnect spiny neurons use both N- and P/Q-type Ca2+ channels.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Svetlana A. Ivanova ◽  
Anton J. M. Loonen

A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington’s disease. Huntington’s disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs): postsynaptic density- (PSD-) 95. This leaves more PSD-95 available to stabilize NR2B subunit carrying NMDA receptors in the synaptic membrane. This results in increased excitotoxicity for which particularly striatal medium spiny neurons from the indirect extrapyramidal pathway are sensitive. In Parkinson’s disease the sensitivity for excitotoxicity is related to increased oxidative stress due to genetically determined abnormal metabolism of dopamine or related products. This probably also increases the sensitivity of medium spiny neurons for exogenous levodopa. Particularly the combination of increased oxidative stress due to aberrant dopamine metabolism, increased vulnerability to NMDA induced excitotoxicity, and the particular sensitivity of indirect pathway medium spiny neurons for this excitotoxicity may explain the observed increased prevalence of levodopa-induced dyskinesia.


2017 ◽  
Vol 37 (23) ◽  
pp. 5758-5769 ◽  
Author(s):  
Christina J. Schier ◽  
William D. Marks ◽  
Jason J. Paris ◽  
Aaron J. Barbour ◽  
Virginia D. McLane ◽  
...  

2019 ◽  
Vol 121 (3) ◽  
pp. 881-892 ◽  
Author(s):  
David D. Kline ◽  
Sheng Wang ◽  
Diana L. Kunze

Chronic intermittent hypoxia (CIH) reduces afferent-evoked excitatory postsynaptic currents (EPSCs) but enhances basal spontaneous (s) and asynchronous (a) EPSCs in second-order neurons of nucleus tractus solitarii (nTS), a major area for cardiorespiratory control. The net result is an increase in synaptic transmission. The mechanisms by which this occurs are unknown. The N-type calcium channel and transient receptor potential cation channel TRPV1 play prominent roles in nTS sEPSCs and aEPSCs. The functional role of these channels in CIH-mediated afferent-evoked EPSC, sEPSC, and aEPSC was tested in rat nTS slices following antagonist inhibition and in mouse nTS slices that lack TRPV1. Block of N-type channels decreased aEPSCs in normoxic and, to a lesser extent, CIH-exposed rats. sEPSCs examined in the presence of TTX (miniature EPSCs) were also decreased by N-type block in normoxic but not CIH-exposed rats. Antagonist inhibition of TRPV1 reduced the normoxic and the CIH-mediated increase in sEPSCs, aEPSCs, and mEPSCs. As in rats, in TRPV1+/+ control mice, aEPSCs, sEPSCs, and mEPSCs were enhanced following CIH. However, none were enhanced in TRPV1−/− null mice. Normoxic tractus solitarii (TS)-evoked EPSC amplitude, and the decrease after CIH, were comparable in control and null mice. In rats, TRPV1 was localized in the nodose-petrosal ganglia (NPG) and their central branches. CIH did not alter TRPV1 mRNA but increased its protein in NPG consistent with an increased contribution of TRPV1. Together, our studies indicate TRPV1 contributes to the CIH increase in aEPSCs and mEPSCs, but the CIH reduction in TS-EPSC amplitude occurs via an alternative mechanism. NEW & NOTEWORTHY This study provides information on the underlying mechanisms responsible for the chronic intermittent hypoxia (CIH) increase in synaptic transmission that leads to exaggerated sympathetic nervous and respiratory activity at baseline and in response to low oxygen. We demonstrate that the CIH increase in asynchronous and spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs, but not decrease in afferent-driven EPSCs, is dependent on transient receptor potential vanilloid type 1 (TRPV1). Thus TRPV1 is important in controlling nucleus tractus solitarii synaptic activity during CIH.


2006 ◽  
Vol 95 (3) ◽  
pp. 1537-1544 ◽  
Author(s):  
Yuchun Zhang ◽  
Ping Deng ◽  
Yan Li ◽  
Zao C. Xu

Spiny neurons in the neostriatum are highly vulnerable to ischemia. Enhancement of excitatory synaptic transmissions has been implicated in ischemia-induced excitotoxic neuronal death. Here we report that evoked excitatory postsynaptic currents in spiny neurons were potentiated after transient forebrain ischemia. The ischemia-induced potentiation in synaptic efficacy was associated with an enhancement of presynaptic release as demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and a decrease in the paired-pulse ratio. The amplitude of inward currents evoked by exogenous application of glutamate did not show significant changes after ischemia, suggesting that postsynaptic mechanism is not involved. The ischemia-induced increase in mEPSCs frequency was not affected by blockade of voltage-gated calcium channels, but it was eliminated in the absence of extracellular calcium. Bath application of ATP P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) significantly reduced mEPSC frequency in ischemic neurons but had no effects on the control ones. Furthermore, the inhibitory effect of PPADS on ischemic neurons was abolished in Ca2+-free external solution. These results indicate that excitatory synaptic transmissions in spiny neurons are potentiated after ischemia via presynaptic mechanisms. Activation of P2X receptors and the consequent Ca2+ influx might contribute to the ischemia-induced facilitation of glutamate release.


2015 ◽  
Vol 221 (4) ◽  
pp. 2093-2107
Author(s):  
Dominic Thibault ◽  
Nicolas Giguère ◽  
Fabien Loustalot ◽  
Marie-Josée Bourque ◽  
Charles Ducrot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document