scholarly journals Limit analysis based on elastic compensation method of branch pipe tee connection under internal pressure and out-of-plane moment loading

1998 ◽  
Vol 75 (11) ◽  
pp. 819-825 ◽  
Author(s):  
D Plancq ◽  
M.N Berton
2001 ◽  
Vol 124 (1) ◽  
pp. 7-13 ◽  
Author(s):  
S. Chapuliot ◽  
D. Moulin ◽  
D. Plancq

A numerical and experimental study on the behavior of a branch pipe is presented in this article. The test is the first one of a series analyzing the behavior of the branch pipe under out-of-plane bending load in the presence of a crack near the junction, a weld or internal pressure. It is performed under bending alone, without weld and without internal pressure, so as to constitute a reference for the series, and thus to estimate each parameter influence. In complement to the experimental study, finite element calculations are performed and presented in this article, so as to analyze the elastic-plastic behavior of the branch pipe and its limit state.


1986 ◽  
Vol 21 (1) ◽  
pp. 9-16 ◽  
Author(s):  
M G Kirkwood ◽  
G D T Carmichael ◽  
D G Moffat

The authors have used the BERSAFE finite element computer program to model an equal diameter branch pipe intersection of mean diameter/thickness ratio 24.5. Previous results for internal pressure and the two in-plane bending moments are augmented by the present results for the two out-of-plane and the two twisting moment load categories. The predicted stresses are compared with results from tests on a 254 mm (10 inch) diameter welded branch junction, and also with the values from the current UK power piping code BS 806.


1974 ◽  
Vol 41 (2) ◽  
pp. 355-359 ◽  
Author(s):  
J. L. Hill ◽  
C. G. Davis

The effect of initial forces on the vibration and stability of curved, clamped, fluid conveying tubes is analyzed by the finite-element technique. The tubes are initially planar with general center-line shapes approximated by constant curvature arcs. The effect of internal pressure is included. Numerical results are presented with, and without, the effects of the initial in-plane forces, for circular arcs S, L, and spiral configurations. Neglecting initial forces results in out-of-plane buckling, while including these forces prevents buckling within the elastic limit, in all configurations studied.


Author(s):  
Heng Peng ◽  
Yinghua Liu

Abstract In this paper, the Stress Compensation Method (SCM) adopting an elastic-perfectly-plastic (EPP) material is further extended to account for limited kinematic hardening (KH) material model based on the extended Melan's static shakedown theorem using a two-surface model defined by two hardening parameters, namely the initial yield strength and the ultimate yield strength. Numerical analysis of a cylindrical pipe is performed to validate the outcomes of the extended SCM. The results agree well with ones from literature. Then the extended SCM is applied to the shakedown and limit analysis of KH piping elbows subjected to internal pressure and cyclic bending moments. Various loading combinations are investigated to generate the shakedown limit and the plastic limit load interaction curves. The effects of material hardening, elbow angle and loading conditions on the shakedown limit and the plastic limit load interaction curves are presented and analysed. The present method is incorporated in the commercial finite element simulation software and can be considered as a general computational tool for shakedown analysis of KH engineering structures. The obtained results provide a useful information for the structural design and integrity assessment of practical piping elbows.


Author(s):  
R Kitching ◽  
P Myler

Tests to failure have been carried out on six smooth pipe bends constructed by hand lay-up from polyester resin and glass in the form of chopped strand mat. The failure loads under out-of-plane bending only are compared with those where this type of loading is combined with internal pressure. The results are discussed in relation to the design procedure adopted in BS 7159: 1989.


Sign in / Sign up

Export Citation Format

Share Document