failure loads
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 86)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Young W. Kwon ◽  
Carlos Diaz-Colon ◽  
Stanley Defisher

Abstract Recently, new failure criteria were proposed for brittle materials to predict their failure loads regardless of the shapes of a notch or a crack in the material. This paper is to further evaluate the failure criteria for different shapes of notches and different materials. A circular hole, elliptical hole or crack-like slit with a different angle with respect to the loading direction was considered. Double circular holes were also studied. The materials studied were an isotropic material like polymethyl methacrylate (PMMA) as well as laminated carbon fiber composites. Both cross-ply and quasi-isotropic layup orientations were examined. The lamination theory was used for the composite materials so that they can be modelled as an anisotropic and homogeneous material. The test results were compared to the theoretical predictions using the finite element analysis with 2-D plane stress models. Both theoretical failure stresses agreed well with the experimental data for the materials and notch geometries studied herein.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7647
Author(s):  
Huy Q. Nguyen ◽  
Tri N. M. Nguyen ◽  
Do Hyung Lee ◽  
Jung J. Kim

Strengthening existing reinforced concrete (RC) slabs using externally bonded materials is increasingly popular due to its adaptability and versatility. Nevertheless, ductility reduction of the rehabilitated flexural members with these materials can lead to brittle shear failure. Therefore, a new approach for strengthening is necessary. This paper presents a methodology to induce ductile failure of flexural strengthened one-way RC slabs. Ultimate failure loads can be considered to develop the proposed design methodology. Different failure modes corresponding to ultimate failure loads for RC slabs are addressed. Flexural and shear failure regions of RC slabs can be established by considering the failure modes. The end span of the concrete slab is shown for a case study, and numerical examples are solved to prove the essentiality of this methodology.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xingyou Yao

The cold-formed steel (CFS) lipped channel section with circular holes has been widely used in low-rise and multistory building structures as the column. However, the circular hole in the web makes the lipped channel column become susceptible to buckle. A total of 54 CFS lipped channel axial compression columns with and without circular holes were used to study the buckling behavior and the effective width design method. The interaction of the local buckling and the distortional buckling were observed for the short and intermediate columns, while the slender columns were controlled by the interaction of the local buckling, distortional buckling, and flexural buckling or flexural-torsional buckling. The experimental failure loads were gradually decreased with the increase in the diameter of the circular hole for the specimens with the same section. The failure loads of the specimens with two holes were lower than those of the specimens with one hole with same section and same diameter of holes. Then, the experimental results were used to validate a nonlinear finite element model (FEM) previously developed by the authors. The validated FEM was subsequently used to obtain additional 36 numerical failure results concerning the effects of the length, the section, and the diameter and the number of the circular holes. Furthermore, the proposal to calculate the distortional buckling coefficient of the CFS lipped channel section with circular holes were put forward based on numerical analysis considering the reduction of effect of holes. Finally, a proposal to improve the effective width method (EWM) design approach for CFS lipped channel sections with circular holes under axial compression was presented. The comparisons between experimental and numerical capacities and their calculations provided by the proposed EWM design method illustrate a great application of the proposed approach.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7526
Author(s):  
Amrit Shankar Verma ◽  
Nils Petter Vedvik ◽  
Zhen Gao ◽  
Saullo G. P. Castro ◽  
Julie J. E. Teuwen

The leading edges of wind turbine blades are adhesively bonded composite sections that are susceptible to impact loads during offshore installation. The impact loads can cause localized damages at the leading edges that necessitate damage tolerance assessment. However, owing to the complex material combinations together with varying bondline thicknesses along the leading edges, damage tolerance investigation of blades at full scale is challenging and costly. In the current paper, we design a coupon scale test procedure for investigating bondline thickness effects on damage tolerance of joints after being subjected to localized impact damages. Joints with bondline thicknesses (0.6 mm, 1.6 mm, and 2.6 mm) are subjected to varying level of impact energies (5 J, 10 J, and 15 J), and the dominant failure modes are identified together with analysis of impact kinematics. The damaged joints are further tested under tensile lap shear and their failure loads are compared to the intact values. The results show that for a given impact energy, the largest damage area was obtained for the thickest joint. In addition, the joints with the thinnest bondline thicknesses displayed the highest failure loads post impact, and therefore the greatest damage tolerance. For some of the thin joints, mechanical interlocking effects at the bondline interface increased the failure load of the joints by 20%. All in all, the coupon scale tests indicate no significant reduction in failure loads due to impact, hence contributing to the question of acceptable localized damage, i.e., damage tolerance with respect to static strength of the whole blade.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7539
Author(s):  
Frank A. Spitznagel ◽  
Estevam A. Bonfante ◽  
Tiago M. B. Campos ◽  
Maximilian A. Vollmer ◽  
Johannes Boldt ◽  
...  

To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), porcelain-fused-to-zirconia (PFZ-test) and monolithic LDS (LDS-test). Half of the specimens (n = 12/group) were subjected to fatigue in a chewing-simulator (1.2 million cycles, 198 N, 1.67 Hz, thermocycling 5–55 °C). All samples were exposed to single-load-to-failure without (PFM0, PFZ0, LDS0) or with fatigue (PFM1, PFZ1, LDS1). Comparisons were statistically analyzed with t-tests and regression-models and corrected for multiple-testing using the Student–Neuman–Keuls method. All PFM and LDS crowns survived fatigue exposure, whereas 16.7% of PFZ showed chipping failures. The mean failure-loads (±SD) were: PFM0: 2633 ± 389 N, PFM1: 2349 ± 578 N, PFZ0: 2152 ± 572 N, PFZ1: 1686 ± 691 N, LDS0: 2981 ± 798 N, LDS1: 2722 ± 497 N. Fatigue did not influence load to failure of any group. PFZ ISSC showed significantly lower failure-loads than monolithic-LDS regardless of artificial aging (p < 0.05). PFM ISSC showed significantly higher failure loads after fatigue than PFZ (p = 0.032). All ISSC failed in a range above physiological chewing forces. Premature chipping fractures might occur in PFZ ISSC. Monolithic-LDS ISSC showed high reliability as an all-ceramic material for screw-retained posterior hybrid-abutment-crowns.


Author(s):  
Kürşat Gültekin ◽  
Mustafa Enes Yazici

In the presented study, the effect of hexagonal boron nitride and hexagonal boron carbide nanoparticles on the strength of adhesively bonded joints was investigated experimentally. Hexagonal boron nitride nanoparticles were functionalized using 3-(aminopropyl) triethoxysilane to improve adhesion and increase the interaction between epoxy and nanoparticles. Similarly, h-B4C nanoparticles were functionalized by using 3-(glycidyloxypropyl) trimethoxysilane. New structural nano adhesives were produced by reinforcing the functionalized nanoparticles into epoxy at different proportions (0.5 wt.%, 1.0 wt.%, 2 wt.%, 3.0 wt.%, 4.0 wt.%, and 5.0 wt.%). Two different epoxies with different viscosity values (MGS-LR285 and Araldite 2011) were used as adhesives, and aluminum alloy (AA2024-T3) was chosen as an adherend. Tensile test was carried out to determine the failure load of the adhesive joints, and the fracture surface morphology was examined after the test Additionally, Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) analysis was performed to observe the distribution of boron nanoparticles in the adhesives. The experimental results showed that the reinforcement of hexagonal boron nitride and boron carbide nanoparticles to the adhesives increased the joint strength substantially depending on the reinforcement ratio and viscosity of the adhesives. The maximum increase in failure loads was achieved by adding 1 wt.% functionalized boron nitride to high viscosity Araldite 2011 adhesive and 2 wt.% to low viscosity MGS-LR285 adhesive, and the ratio of increase in failure loads is 31% and 63%, respectively. Moreover, by adding 2 wt.% functionalized boron carbide nanoparticles to the Araldite 2011 and MGS-LR285 adhesives, the strength of the joints increased by about 27% and 70%, respectively.


2021 ◽  
Vol 63 (11) ◽  
pp. 1007-1011
Author(s):  
İsmail Saraç

Abstract This study was carried out in two stages. In the first step, a numerical study was performed to verify the previous experimental study. In accordance with the previous experimental study data, single lap joints models were created using the ANSYS finite element analysis program. Then, nonlinear stress and failure analyses were performed by applying the failure loads obtained in the experimental study. The maximum stress theory was used to find finite element failure loads of the single lap joints models. As a result of the finite element analysis, an approximate 80 % agreement was found between experimental and numerical results. In the second step of the study, in order to increase the bond strength, different overlap end geometry models were produced and peel and shear stresses in the adhesive layer were compared according to the reference model. As a result of the analyses, significant strength increases were calculated according to the reference model. The strength increase in model 3 and model 5 was found to be 80 % and 67 %, respectively, relative to the reference model.


2021 ◽  
Vol 108 (Supplement_8) ◽  
Author(s):  
Adrienne Christopher ◽  
Jonathon Sanchez ◽  
John Fischer

Abstract Aim Research indicates that prophylactic mesh may help prevent incisional hernia after laparotomy, but best practice patterns in these situations are still evolving. Here, we compare the failure loads (FLs) and biomechanical stiffness (BMS) of 35 porcine abdominal wall laparotomy incisions reinforced with meshes of various widths and fixation distances using biomechanical testing. Material and Methods In each specimen, a ten centimeter (cm) incision was made and closed using continuous 1-0 Maxon suture. Specimens were randomized to mesh width (none, 2.5cm, 3cm, 4cm, 6cm, 8cm) and tack separation (1.5cm, 2cm apart), and the meshes secured in an onlay fashion. Cyclic loads oscillating from 15 Newtons (N) to 140N were applied to stimulate abdominal wall stress, and the specimens subsequently loaded to failure. FLs (N) and BMS (N/mm) were comparatively analyzed. Results All specimens failed via suture pull-through. FLs and BMS were lowest in specimens with suture-only (421.43 N; 11.69 N/mm). FLs and BMS were significantly higher in 4cm mesh specimens (567.51N) than those with suture, 2.5cm, and 3.0cm mesh (all p &lt; 0.05). FLs in specimens with a greater number of tacks were consistently higher in meshes of similar sizes, although these did not reach significance. Conclusions Four cm mesh re-enforcement is superior to suture-only and smaller meshes at preserving strength in laparotomy closure in the early stages of healing, but larger meshes (6cm, 8cm) do not provide additional benefit. Meshes with more fixation points may be advantageous, but additional data is needed to make definitive conclusions.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3789
Author(s):  
Taha Awadallah El-Sayed

Geopolymer concrete (GC) is a substantial sort that is created by utilizing metakaolin, ground granulated blast furnace slag (GGBS), silica fumes, fly ash, and other cementitious materials as binding ingredients. The current study concentrated on the structural behavior of the ferrocement geopolymer HSC-columns subjected to axial loading and produced using rice straw ash (RSA). The major goal of this research was to use the unique features of the ferrocement idea to manufacture members that function as columns bearing members. As they are more cost-effective and lower in weight, these designed elements can replace traditional RC members. The study also intended to reduce the cost of producing new parts by utilizing low-cost materials such as light weight expanded and welded wire meshes, polyethylene mesh (Tensar), and fiber glass mesh. For this purpose, an experimental plan was conducted and a finite element prototype with ANSYS2019-R1 was implemented. Nine geopolymer ferrocement columns of dimensions of 150 mm × 150 mm × 1600 mm with different volume-fraction and layers as well as a number of metallic and nonmetallic meshes were examined under axial compression loading until failure. The performance of the geopolymer columns was examined with consideration to the mid-span deflection, ultimate failure load, first crack load with various phases of loading, the cracking patterns, energy absorption and ductility index. Expanded or welded ferrocement geopolymer columns showed greater ultimate failure loads than the control column. Additionally, using expanded or welded columns had a considerable effect on ultimate failure loads, where the welded wire mesh exhibited almost 28.10% compared with the expanded wire mesh. Columns reinforced with one-layer of nonmetallic Tensar-mesh obtained a higher ultimate failure load than all tested columns without concrete cover spalling. The analytical and experimental results were in good agreement. The results displayed an accepted performance of the ferrocement geopolymer HSC-columns.


2021 ◽  
Vol 40 (3) ◽  
pp. 363-370
Author(s):  
C. Arum ◽  
I.O. Olofintuyi ◽  
O.O. Ekundayo

The applicability of structural timber to construction is due to its desirable qualities such as lightweight, aesthetics and eco-friendliness. However, continuous use of timber for structural purposes comes with the challenge posed by the anisotropic nature of various timber species. Advanced societies have developed and modified their sawn timber species in form of glue-laminated structural members such as beams, columns, joist etc. Nigeria timber species are yet to be fully explored along glued-laminated beams production. This paper assesses the suitability of three selected Nigerian timber species namely; Gmelina Arborea (ML), Terminalia superba (AF) and Pycnanthus angolensis (AK) for production of glued-laminated (glulam) beams. They are locally known respectively as Melina (ML), Afara (AF) and Akomu (AK). The applicability and glue-ability of the glues and their ultimate effect on the flexural strength were investigated through the use of two different types of glue components namely; polyvinyl acetate (PVA) and polyurethane (PUR) glue. The physical properties of the timber species such as moisture content (MC) and densities were determined using BS EN 408. The beams produced which are 1680mm by 150mm by 120mm in dimension were subjected to two points loading system to determine their flexural strengths and failure loads in accordance with ASTM D-198. The flexural strengths results indicated that Pycnanthus angolensis offered most resistance to bending loads with an average flexural strength value of 16.04N/mm2 when PUR glue was used and 13.04N/mm2 when PVA glue was used. The ANOVA result showed that glue types have significant effect on the flexural strength at confidence level of 95%. It was concluded that Pycnanthus angolensis is most suitable for structural applications. PUR is considered the better glue in terms of strength and glue-ability while PVA glue is considered better in terms of workability and applicability based on almost perfect glue line integrity achieved.


Sign in / Sign up

Export Citation Format

Share Document