scholarly journals Classical limit of time-dependent quantum field theory — a Schwinger–Dyson approach

2001 ◽  
Vol 515 (3-4) ◽  
pp. 463-469 ◽  
Author(s):  
Fred Cooper ◽  
Avinash Khare ◽  
Harvey Rose
1994 ◽  
Vol 09 (14) ◽  
pp. 2363-2409 ◽  
Author(s):  
H. CHU ◽  
H. UMEZAWA

We present a comprehensive review of the most fundamental and practical aspects of thermo-field dynamics (TFD), including some of the most recent developments in the field. To make TFD fully consistent, some suitable changes in the structure of the thermal doublets and the Bogoliubov transformation matrices have been made. A close comparison between TFD and the Schwinger-Keldysh closed time path formalism (SKF) is presented. We find that TFD and SKF are in many ways the same in form; in particular, the two approaches are identical in stationary situations. However, TFD and SKF are quite different in time-dependent nonequilibrium situations. The main source of this difference is that the time evolution of the density matrix itself is ignored in SKF while in TFD it is replaced by a time-dependent Bogoliubov transformation. In this sense TFD is a better candidate for time-dependent quantum field theory. Even in equilibrium situations, TFD has some remarkable advantages over the Matsubara approach and SKF, the most notable being the Feynman diagram recipes, which we will present. We will show that the calculations of two-point functions are simplified, instead of being complicated, by the matrix nature of the formalism. We will present some explicit calculations using TFD, including space-time inhomogeneous situations and the vacuum polarization in equilibrium relativistic QED.


Author(s):  
Jean Zinn-Justin

The methods to evaluate barrier penetration effects, in the semi-classical limit are generalized to quantum field theory (QFT). Since barrier penetration is associated with classical motion in imaginary time, the QFT is considered in its Euclidean formulation. In the representation of QFT in terms of field integrals, in the semi-classical limit, barrier penetration is related to finite action solutions (instantons) of the classical field equations. The evaluation of instanton contributions at leading order is explained, the main new problem arising from ultraviolet divergences. The lifetime of metastable states is related to the imaginary part of the ‘ground state’ energy. However, for later purpose, it is useful to calculate the imaginary part not only of the vacuum amplitude, but also of correlation functions. In the case of the vacuum amplitude, the instanton contribution is proportional to the space–time volume. Therefore, dividing by the volume, one obtains the probability per unit time and unit volume of a metastable pseudo-vacuum to decay. A scalar field theory with a φ4 interaction, generalization of the quartic anharmonic oscillator is discussed in two and three dimensions, dimensions in which the theory is super-renormalizable, then more general scalar field theories are considered.


2005 ◽  
Vol 83 (3) ◽  
pp. 257-271 ◽  
Author(s):  
Dan Solomon

Dirac's hole theory (HT) and quantum field theory (QFT) are generally considered equivalent. However, it was recently shown by several investigators that this is not necessarily the case because when the change in the vacuum energy was calculated for a time-independent perturbation, HT and QFT yielded different results. In this paper, we extend this discussion to include a time-dependent perturbation for which the exact solution to the Dirac equation is known. We show that for this case also, HT and QFT yield different results. In addition, we offer some discussion of the problem of anomalies in QFT. PACS Nos.: 03.65–w, 11.10–z


2016 ◽  
Vol 25 (12) ◽  
pp. 1644012 ◽  
Author(s):  
David Berenstein ◽  
Alexandra Miller

In this paper, we argue that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.


Sign in / Sign up

Export Citation Format

Share Document