scholarly journals Reconstructing spacetime from the hologram, even in the classical limit, requires physics beyond the Planck scale

2016 ◽  
Vol 25 (12) ◽  
pp. 1644012 ◽  
Author(s):  
David Berenstein ◽  
Alexandra Miller

In this paper, we argue that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.

2004 ◽  
Vol 16 (10) ◽  
pp. 1291-1348 ◽  
Author(s):  
MICHAEL DÜTSCH ◽  
KLAUS FREDENHAGEN

In the framework of perturbative algebraic quantum field theory a local construction of interacting fields in terms of retarded products is performed, based on earlier work of Steinmann [42]. In our formalism the entries of the retarded products are local functionals of the off-shell classical fields, and we prove that the interacting fields depend only on the action and not on terms in the Lagrangian which are total derivatives, thus providing a proof of Stora's "Action Ward Identity" [45]. The theory depends on free parameters which flow under the renormalization group. This flow can be derived in our local framework independently of the infrared behavior, as was first established by Hollands and Wald [32]. We explicitly compute non-trivial examples for the renormalization of the interaction and the field.


Author(s):  
Jean Zinn-Justin

The methods to evaluate barrier penetration effects, in the semi-classical limit are generalized to quantum field theory (QFT). Since barrier penetration is associated with classical motion in imaginary time, the QFT is considered in its Euclidean formulation. In the representation of QFT in terms of field integrals, in the semi-classical limit, barrier penetration is related to finite action solutions (instantons) of the classical field equations. The evaluation of instanton contributions at leading order is explained, the main new problem arising from ultraviolet divergences. The lifetime of metastable states is related to the imaginary part of the ‘ground state’ energy. However, for later purpose, it is useful to calculate the imaginary part not only of the vacuum amplitude, but also of correlation functions. In the case of the vacuum amplitude, the instanton contribution is proportional to the space–time volume. Therefore, dividing by the volume, one obtains the probability per unit time and unit volume of a metastable pseudo-vacuum to decay. A scalar field theory with a φ4 interaction, generalization of the quartic anharmonic oscillator is discussed in two and three dimensions, dimensions in which the theory is super-renormalizable, then more general scalar field theories are considered.


2019 ◽  
Vol 28 (14) ◽  
pp. 1943004 ◽  
Author(s):  
Steven Carlip

Naive calculations in quantum field theory suggest that vacuum fluctuations should induce an enormous cosmological constant. What if these estimates are right? I argue that even a huge cosmological constant might be hidden in Planck-scale fluctuations of geometry and topology — what Wheeler called “spacetime foam” — while remaining virtually invisible macroscopically.


Sign in / Sign up

Export Citation Format

Share Document