Lattice and electronic band structure changes across the surface ferroelectric transition

1998 ◽  
Vol 249 (5-6) ◽  
pp. 505-511 ◽  
Author(s):  
Jaewu Choi ◽  
P.A. Dowben ◽  
Stephen Ducharme ◽  
V.M. Fridkin ◽  
S.P. Palto ◽  
...  
2021 ◽  
Vol 22 (4) ◽  
pp. 539-561
Author(s):  
V. L. Karbivskyy ◽  
V. V. Zaika ◽  
L. I. Karbivska ◽  
N. A. Kurgan ◽  
N. O. Zueva

Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, an important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of the film.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

1972 ◽  
Vol 33 (C3) ◽  
pp. C3-223-C3-233 ◽  
Author(s):  
I. B. GOLDBERG ◽  
M. WEGER

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2019 ◽  
Vol 58 (9) ◽  
pp. 5533-5542 ◽  
Author(s):  
Patrick Gougeon ◽  
Philippe Gall ◽  
Rabih Al Rahal Al Orabi ◽  
Benoit Boucher ◽  
Bruno Fontaine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document