Organization and expression of the Paramecium caudatum gene encoding nucleosome assembly protein 1

Gene ◽  
2001 ◽  
Vol 280 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
Norihito Nishiyama ◽  
Shun Sawatsubashi ◽  
Masaki Ishida ◽  
Kiyoshi Yamauchi
2010 ◽  
Vol 85 (1) ◽  
pp. 9-17
Author(s):  
Norihito Nishiyama ◽  
Kazuyuki Mikami ◽  
Ariki Matsuoka ◽  
Takehiko Ochiai ◽  
Kiyoshi Yamauchi

2011 ◽  
Vol 436 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Masanori Noda ◽  
Susumu Uchiyama ◽  
Adam R. McKay ◽  
Akihiro Morimoto ◽  
Shigeki Misawa ◽  
...  

Proteins often exist as ensembles of interconverting states in solution which are often difficult to quantify. In the present manuscript we show that the combination of MS under nondenaturing conditions and AUC-SV (analytical ultracentrifugation sedimentation velocity) unambiguously clarifies a distribution of states and hydrodynamic shapes of assembled oligomers for the NAP-1 (nucleosome assembly protein 1). MS established the number of associated units, which was utilized as input for the numerical analysis of AUC-SV profiles. The AUC-SV analysis revealed that less than 1% of NAP-1 monomer exists at the micromolar concentration range and that the basic assembly unit consists of dimers of yeast or human NAP-1. These dimers interact non-covalently to form even-numbered higher-assembly states, such as tetramers, hexamers, octamers and decamers. MS and AUC-SV consistently showed that the formation of the higher oligomers was suppressed with increasing ionic strength, implicating electrostatic interactions in the formation of higher oligomers. The hydrodynamic shapes of the NAP-1 tetramer estimated from AUC-SV agreed with the previously proposed assembly models built using the known three-dimensional structure of yeast NAP-1. Those of the hexamer and octamer could be represented by new models shown in the present study. Additionally, MS was used to measure the stoichiometry of the interaction between the human NAP-1 dimer and the histone H2A–H2B dimer or H3–H4 tetramer. The present study illustrates a rigorous procedure for the analysis of protein assembly and protein–protein interactions in solution.


Biochemistry ◽  
2004 ◽  
Vol 43 (32) ◽  
pp. 10592-10599 ◽  
Author(s):  
Steven J. McBryant ◽  
Olve B. Peersen

2017 ◽  
Vol 37 (1) ◽  
pp. 58-69
Author(s):  
Divya Reddy ◽  
Saikat Bhattacharya ◽  
Vinod Jani ◽  
Uddhavesh Sonavane ◽  
Rajendra Joshi ◽  
...  

2004 ◽  
Vol 280 (3) ◽  
pp. 1817-1825 ◽  
Author(s):  
Young-Jun Park ◽  
Jayanth V. Chodaparambil ◽  
Yunhe Bao ◽  
Steven J. McBryant ◽  
Karolin Luger

10.1038/78124 ◽  
2000 ◽  
Vol 25 (4) ◽  
pp. 431-435 ◽  
Author(s):  
Ute C. Rogner ◽  
Demetri D. Spyropoulos ◽  
Nicolas Le Novère ◽  
Jean-Pierre Changeux ◽  
Philip Avner

Sign in / Sign up

Export Citation Format

Share Document