localization sequence
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 46)

H-INDEX

51
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Rupinder Kaur ◽  
Brittany A. Leigh ◽  
Isabella T. Ritchie ◽  
Seth R. Bordenstein

Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which sperms fertilize uninfected embryos that suffer catastrophic mitotic defects and lethality; however in infected females, CifA rescues the embryonic lethality and thus imparts a fitness advantage to Wolbachia. Despite widespread relevance to sex determination, evolution, and vector control, the mechanisms underlying when and how CI impairs male reproduction remain unknown and a topic of debate. Here we use cytochemical, microscopic, and transgenic assays in D. melanogaster to demonstrate that CifA and CifB proteins of wMel localize to nuclear DNA throughout the process of spermatogenesis. Cif proteins cause abnormal histone retention in elongating spermatids and protamine deficiency in mature sperms of CI-causing males. Protamine-deficient sperms travel to the female reproductive tract together with Cif proteins. In female ovaries, CifA localizes to germ cell nuclei and overlaps with Wolbachia in the nurse cell cytoplasm and the oocyte, however Cifs are not present in late-stage oocytes and the embryo. Moreover, CI and rescue are contingent upon a newly annotated CifA bipartite nuclear localization sequence. Our results reveal a previously unrecognized phenomena in which prophage proteins invade animal gametic nuclei and modify the histone-protamine transition of spermatogenesis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11329
Author(s):  
Hua Jiang ◽  
Shengyu Gu ◽  
Kai Li ◽  
Junyi Gai

TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1536
Author(s):  
Jie Zhang ◽  
Guangle Zhang ◽  
Yongwang Miao

Smads are involved in a variety of biological activities by mediating bone morphogenetic protein (BMP) signals. The full-length coding sequences (CDSs) of buffalo Smads 1, 4, and 5 were isolated and identified through RT-PCR in this study. Their lengths are 1398 bp, 1662 bp, and 1398 bp, respectively. In silico analysis showed that their transcriptional region structures, as well as their amino acid sequences, physicochemical characteristics, motifs, conserved domains, and three-dimensional structures of their encoded proteins are highly consistent with their counterparts in the species of Bovidae. The three Smad proteins are all hydrophilic without the signal peptides and transmembrane regions. Each of them has an MH1 domain and an MH2 domain. A nuclear localization sequence was found in the MH1 domain of buffalo Smads 1 and 5. Prediction showed that the function of the three Smads is mainly protein binding, and they can interact with BMPs and their receptors. The three genes were expressed in all 10 buffalo tissues assayed, and their expression in the mammary gland, gonad, and spleen was relatively high. The results here indicate that the three buffalo Smads may be involved in the transcriptional regulation of genes in a variety of tissues.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 971
Author(s):  
Amin Tahoun ◽  
Hanem El-Sharkawy ◽  
Samar M. Moustafa ◽  
Lina Jamil M. Abdel-Hafez ◽  
Ashraf Albrakati ◽  
...  

Enteropathogenic (EPEC) and Enterohemorrhagic (EHEC) Escherichia coli are considered emerging zoonotic pathogens of worldwide distribution. The pathogenicity of the bacteria is conferred by multiple virulence determinants, including the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system (T3SS) and effector proteins, including the multifunctional secreted effector protein (EspF). EspF sequences differ between EPEC and EHEC serotypes in terms of the number and residues of SH3-binding polyproline-rich repeats and N-terminal localization sequence. The aim of this study was to discover additional cellular interactions of EspF that may play important roles in E coli colonization using the Yeast two-hybrid screening system (Y2H). Y2H screening identified the anaphase-promoting complex inhibitor Mitotic Arrest-Deficient 2 Like 2 (MAD2L2) as a host protein that interacts with EspF. Using LUMIER assays, MAD2L2 was shown to interact with EspF variants from EHEC O157:H7 and O26:H11 as well as EPEC O127:H6. MAD2L2 is targeted by the non-homologous Shigella effector protein invasion plasmid antigen B (IpaB) to halt the cell cycle and limit epithelial cell turnover. Therefore, we postulate that interactions between EspF and MAD2L2 serve a similar function in promoting EPEC and EHEC colonization, since cellular turnover is a key method for bacteria removal from the epithelium. Future work should investigate the biological importance of this interaction that could promote the colonization of EPEC and EHEC E. coli in the host.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bence Tipary ◽  
András Kovács ◽  
Ferenc Gábor Erdős

Purpose The purpose of this paper is to give a comprehensive solution method for the manipulation of parts with complex geometries arriving in bulk into a robotic assembly cell. As bin-picking applications are still not reliable in intricate workcells, first, the problem is transformed to a semi-structured pick-and-place application, then by collecting and organizing the required process planning steps, a methodology is formed to achieve reliable factory applications even in crowded assembly cell environments. Design/methodology/approach The process planning steps are separated into offline precomputation and online planning. The offline phase focuses on preparing the operation and reducing the online computational burdens. During the online phase, the parts laying in a semi-structured arrangement are first recognized and localized based on their stable equilibrium using two-dimensional vision. Then, the picking sequence and corresponding collision-free robot trajectories are planned and optimized. Findings The proposed method was evaluated in a geometrically complex experimental workcell, where it ensured precise, collision-free operation. Moreover, the applied planning processes could significantly reduce the execution time compared to heuristic approaches. Research limitations/implications The methodology can be further generalized by considering multiple part types and grasping modes. Additionally, the automation of grasp planning and the enhancement of part localization, sequence planning and path smoothing with more advanced solutions are further research directions. Originality/value The paper proposes a novel methodology that combines geometrical computations, image processing and combinatorial optimization, adapted to the requirements of flexible pick-and-place applications. The methodology covers each required planning step to reach reliable and more efficient operation.


2021 ◽  
Vol 9 (8) ◽  
pp. 1756
Author(s):  
Alisa Strohmayer ◽  
Timothy Schwarz ◽  
Mario Braun ◽  
Gabi Krczal ◽  
Kajohn Boonrod

SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.


2021 ◽  
Author(s):  
Charoula Peta ◽  
Emmanouella Tsirimonaki ◽  
Constantinos Fedonidis ◽  
Xeni Koliou ◽  
Nikos Sakellaridis ◽  
...  

Neurofibromatosis type 1, NF-1, is a common monogenic (NF1) disease, characterized by highly variable clinical presentation and high predisposition for tumors, especially those of astrocytic origin (low- to high-grade gliomas). Unfortunately, very few genotype–phenotype correlations have been possible, and the numerous identified mutations do not offer help for prognosis and patient counselling. Whole gene deletion in animals does not successfully model the disease, as NF-1 cases caused by point mutations could be differentially affected by cell type-specific alternative splice variants of NF1. In this chapter, we will discuss the differential Microtubule-Associated-Protein (MAP) properties of NLS or ΔNLS neurofibromins, produced by the alternatively splicing of exon 51, which also contains a Nuclear Localization Sequence (NLS), in the assembly of the mitotic spindle and in faithful genome transmission. We will also commend on the major theme that emerges about NLS-containing tumor suppressors that function as mitotic MAPs.


2021 ◽  
Author(s):  
Hamine C Oliveira ◽  
Taina D da Silva ◽  
Guilherme H Salvador ◽  
Ivan R Moraes ◽  
Cintia A Fukuda ◽  
...  

The classical nuclear import pathway is mediated by importin (Impα and Impβ), which recognizes the cargo protein by its Nuclear Localization Sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3 the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jekaterina Vohhodina ◽  
Liana J. Goehring ◽  
Ben Liu ◽  
Qing Kong ◽  
Vladimir V. Botchkarev ◽  
...  

AbstractR-loop structures act as modulators of physiological processes such as transcription termination, gene regulation, and DNA repair. However, they can cause transcription-replication conflicts and give rise to genomic instability, particularly at telomeres, which are prone to forming DNA secondary structures. Here, we demonstrate that BRCA1 binds TERRA RNA, directly and physically via its N-terminal nuclear localization sequence, as well as telomere-specific shelterin proteins in an R-loop-, and a cell cycle-dependent manner. R-loop-driven BRCA1 binding to CpG-rich TERRA promoters represses TERRA transcription, prevents TERRA R-loop-associated damage, and promotes its repair, likely in association with SETX and XRN2. BRCA1 depletion upregulates TERRA expression, leading to overly abundant TERRA R-loops, telomeric replication stress, and signs of telomeric aberrancy. Moreover, BRCA1 mutations within the TERRA-binding region lead to an excess of TERRA-associated R-loops and telomeric abnormalities. Thus, normal BRCA1/TERRA binding suppresses telomere-centered genome instability.


Sign in / Sign up

Export Citation Format

Share Document