Sex- and age-related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice

2002 ◽  
Vol 170 (1-2) ◽  
pp. 107-115 ◽  
Author(s):  
Kenneth R Henry
2019 ◽  
Vol 23 ◽  
pp. 233121651983961 ◽  
Author(s):  
John H. Grose ◽  
Emily Buss ◽  
Hollis Elmore

The purpose of this study was to determine whether cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties in humans and whether it manifests as deficient suprathreshold processing of temporal and spectral modulation. Three experiments were undertaken evaluating the effects of age on (a) the auditory brainstem response as a function of level, (b) temporal modulation detection as a function of level and background noise, and (c) spectral modulation as a function of level. Across the three experiments, a total of 21 older listeners with near-normal audiograms and 29 young listeners with audiometrically normal hearing participated. The auditory brainstem response experiment demonstrated reduced Wave I amplitudes and concomitant reductions in the amplitude ratios of Wave I to Wave V in the older listener group. These findings were interpreted as consistent with an electrophysiological profile of cochlear synaptopathy. The temporal and spectral modulation detection experiments, however, provided no support for the hypothesis of compromised suprathreshold processing in these domains. This pattern of results suggests that even if cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties, then temporal and spectral modulation detection paradigms are not sensitive to its presence.


2002 ◽  
Vol 45 (6) ◽  
pp. 1249-1261 ◽  
Author(s):  
Flint A. Boettcher

Age-related hearing loss (ARHL or presbyacusis) is an increasingly common form of sensorineural hearing loss (SNHL) as a result of changing demographics, and the auditory brainstem response (ABR) is a common experimental and clinical tool in audiology and neurology. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABR in comparison to the ABRs of younger adults. The approach of this review will be to integrate physiological and histopathological data from human and animal studies to provide a better understanding of the array of age-related changes in the ABR and to determine how age-related changes in the auditory system may influence how the ABR should be interpreted in presbyacusis. Data will be described in terms of thresholds, latencies, and amplitudes, as well as more complex auditory functions such as masking and temporal processing. Included in the review of data will be an attempt to differentiate between age-related effects that may strictly be due to threshold elevation from those that may be due to the aging process.


1997 ◽  
Vol 111 (10) ◽  
pp. 967-972 ◽  
Author(s):  
Kimitaka Kaga ◽  
Shinichi Iwasaki ◽  
Akira Tamura ◽  
Jun-Ichi Suzuki ◽  
Hideyuki Haebara

AbstractThe temporal bone pathology of a 74-year-old female affected by vestibular schwannoma was compared with findings of auditory brainstem response and electrocochleography. At age 71, she complained of hearing loss in the left ear in which pure tone audiometry revealed threshold elevation in the middle- and high-frequency range. Temporal bone CT scanning revealed a medium-sized cerebellopontine angle tumour in the left ear. ABR showed no response in the left ear, but the electrocochleography showed clear compound action potentials. Three years later, at age 74, she died of metastatic lung cancer and sepsis. The left temporal bone pathology consisted primarily of a large vestibular schwannoma occupying the internal auditory meatus. The organ of Corti was well preserved in each turn. In the modiolus, the numbers of spiral ganglion cells and cochlear nerve fibres in each turn were decreased. These histological findings suggest that clear compound action potentials were recorded from the distal portion of the cochlear nerve in spite of the presence of the vestibular schwannoma, but ABR could not be detected because of the blockade of the proximal portion of the cochlear nerve by the vestibular schwannoma.


2012 ◽  
Vol 23 (01) ◽  
pp. 018-035 ◽  
Author(s):  
Dawn Konrad-Martin ◽  
Marilyn F. Dille ◽  
Garnett McMillan ◽  
Susan Griest ◽  
Daniel McDermott ◽  
...  

Purpose: This cross-sectional study had two goals: (1) Identify and quantify the effects of aging on the auditory brainstem response (ABR); (2) Describe how click rate and hearing impairment modify effects of aging. Research Design and Analysis: ABR measures were obtained from 131 predominately male Veteran participants aged 26 to 71 yr. Metrics analyzed include amplitude and latency for waves I, III, and V, and the I–V interpeak latency interval (IPI) at three repetition rates (11, 51, and 71 clicks/sec) using both polarities. In order to avoid confounding from missing data due to hearing impairment, participants had hearing thresholds <40 dB HL at 2 kHz and 70 dB HL at 4 kHz in at least one ear. Additionally, the median 2, 3, and 4 kHz pure tone threshold average (PTA2,3,4) for the sample, ˜17 dB HL, was used to delineate subgroups of better and worse hearing ears, and only the better hearing sample was modeled statistically. We modeled ABR responses using age, repetition rate, and PTA2,3,4 as covariates. Random effects were used to model correlation between the two ears of a subject and across repetition rates. Inferences regarding effects of aging on ABR measures at each rate were derived from the fitted model. Results were compared to data from subjects with poorer hearing. Results: Aging substantially diminished amplitudes of all of the principal ABR peaks, largely independent of any threshold differences within the group. For waves I and III, age-related amplitude decrements were greatest at a low (11/sec) click rate. At the 11/sec rate, the model-based mean wave III amplitude was significantly smaller in older compared with younger subjects even after adjusting for wave I amplitude. Aging also increased ABR peak latencies, with significant shifts limited to early waves. The I–V IPI did not change with age. For both younger and older subjects, increasing click presentation rate significantly decreased amplitudes of early peaks and prolonged latencies of later peaks, resulting in increased IPIs. Advanced age did not enhance effects of rate. Instead, the rate effect on wave I and III amplitudes was attenuated for the older subjects due to reduced peak amplitudes at lower click rates. Compared with model predictions from the sample of better hearing subjects, mean ABR amplitudes were diminished in the group with poorer hearing, and wave V latencies were prolonged. Conclusions: In a sample of veterans, aging substantially reduced amplitudes of all principal ABR peaks, with significant latency shifts limited to waves I and III. Aging did not influence the I–V IPI even at high click rates, suggesting that the observed absolute latency changes associated with aging can be attributed to changes in auditory nerve input. In contrast, ABR amplitude changes with age are not adequately explained by changes in wave I. Results suggest that aging reduces the numbers and/or synchrony of contributing auditory nerve units. Results also support the concept that aging reduces the numbers, though perhaps not the synchrony, of central ABR generators.


Sign in / Sign up

Export Citation Format

Share Document