scholarly journals Inertial currents in the Indian Ocean derived from satellite tracked surface drifters

2000 ◽  
Vol 23 (5) ◽  
pp. 635-640 ◽  
Author(s):  
P.Kuttan SAJI ◽  
Satheesh C. SHENOI ◽  
Anselm ALMEIDA ◽  
Gangadhara RAO
2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

<p>Using the Gauss–Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Niño-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.</p>


2020 ◽  
Vol 125 (5) ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu‐Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

2015 ◽  
Vol 45 (2) ◽  
pp. 441-458 ◽  
Author(s):  
Shiqiu Peng ◽  
Yu-Kun Qian ◽  
Rick Lumpkin ◽  
Yan Du ◽  
Dongxiao Wang ◽  
...  

AbstractUsing the 1985–2013 record of near-surface currents from satellite-tracked drifters, the pseudo-Eulerian statistics of the near-surface circulation in the Indian Ocean (IO) are analyzed. It is found that the distributions of the current velocities and mean kinetic energy (MKE) in the IO are extremely inhomogeneous in space and nonstationary in time. The most energetic regions with climatologic mean velocity over 50 cm s−1 and MKE over 500 cm2 s−2 are found off the eastern coast of Somalia (with maxima of over 100 cm s−1 and 1500 cm2 s−2) and the equatorial IO, associated with the strong, annually reversing Somalia Current and the twice-a-year eastward equatorial jets. High eddy kinetic energy (EKE) is found in regions of the equatorial IO, western boundary currents, and Agulhas Return Current, with a maximum of over 3000 cm2 s−2 off the eastern coast of Somalia. The lowest EKE (<500 cm2 s−2) occurs in the south subtropical gyre between 30° and 40°S and the central-eastern Arabian Sea. Annual and semiannual variability is a significant fraction of the total EKE off the eastern coast of Somalia and in the central-eastern equatorial IO. In general, both the MKE and EKE estimated in the present study are qualitatively in agreement with, but quantitatively larger than, estimates from previous studies. These pseudo-Eulerian MKE and EKE fields, based on the most extensive drifter dataset to date, are the most precise in situ estimates to date and can be used to validate satellite and numerical results.


Sign in / Sign up

Export Citation Format

Share Document