boreal spring
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shuheng Lin ◽  
Song Yang ◽  
Shan He ◽  
Zhenning Li ◽  
Jiaxin Chen ◽  
...  

AbstractAtmospheric diabatic heating, a major driving force of atmospheric circulation over the tropics, is strongly confined to the tropical western North Pacific (TWNP) region, with the global warmest sea surface temperature (SST). The changes in diabatic heating over the TWNP, which exert great impacts on the global climate system, have recently exhibited a noticeable seasonal dependence with a remarkable increase in boreal spring. In this study, we applied observations, reanalysis data, and numerical experiments to investigate the causes of the seasonality in heating changes. Results show that in boreal spring convection is more sensitive to the TWNP SST, leading to a more significant enhancement of deep convection, although the increase in the SST is nearly the same as that in the other seasons. In the non-spring seasons, the enhanced convection due to increased local SST is suppressed by the anomalous anticyclonic wind shear over the TWNP, generated by the easterly wind anomalies induced by the tropical Indian Ocean (TIO) warming via the Kevin waves. However, the TIO warming does not show any suppressing effect in spring because it is much weaker than that in the other seasons and thus the warming itself cannot induce sufficient convective heating anomalies to excite the Kelvin waves.


2021 ◽  
Author(s):  
Kerry H Cook ◽  
Edward K. Vizy

Abstract The processes that determine the seasonality of precipitation in the Congo Basin are examined using the atmospheric column moisture budget. Studying the fundamental determinants of Congo Basin precipitation seasonality supports process-based studies of variations on all time scales, including those associated with greenhouse gas-induced global warming. Precipitation distributions produced by the ERA5 reanalysis provide sufficient accuracy for this analysis, which requires a consistent dataset to relate the atmospheric dynamics and moisture distribution to the precipitation field. The Northern and Southern Hemisphere regions of the Congo Basin are examined separately to avoid the misconception that Congo Basin rainfall is primarily bimodal. While evapotranspiration is indispensable for providing moisture to the atmospheric column to support precipitation in the Congo Basin, its seasonal variations are small and it does not drive precipitation seasonality. During the equinoctial seasons, precipitation is primarily supported by meridional wind convergence in the moist environment in the 800 hPa to 500 hPa layer where moist air flows into the equatorial trough. Boreal fall rains are stronger than boreal spring rains in both hemispheres because low-level moisture divergence develops in boreal spring in association with the developing Saharan thermal low. The moisture convergence term also dominates the moisture budget during the summer season in both hemispheres, with meridional convergence in the 850-600 hPa layer as cross-equatorial flow interacts with the cyclonic flow about the Angola and Sahara thermal lows. Winter precipitation is low because of dry air advection from the winter hemisphere subtropical highs over the continent.


2021 ◽  
Author(s):  
Jan Smit ◽  
Melanie During ◽  
Camille Berruyer ◽  
Dennis Voeten ◽  
Paul Tafforeau ◽  
...  

Abstract The Cretaceous-Paleogene (KPg) mass extinction ~66 million years ago (Ma) was triggered by the Chicxulub impact on the present-day Yucatán Peninsula. This event caused the extinction of circa 76% of species, including all non-avian dinosaurs, and represents one of the most selective extinctions to date. The timing of the impact and its aftermath have mainly been studied on millennial timescales, leaving the season of the impact unconstrained. Here, we demonstrate that the impact that caused the KPg mass extinction took place during boreal spring. Osteohistology and stable isotope records of exceptionally preserved dermal and perichondrial bones in acipenseriform fishes from the Tanis impact-induced seiche deposits reveal annual cyclicity across the final years of the Cretaceous. These fishes ultimately perished in boreal spring. Annual life cycles, involving seasonal timing and duration of reproduction, feeding, hibernation, and aestivation, vary strongly across latest Cretaceous biotic diversity. We conclude that the timing of the Chicxulub impact in boreal spring significantly influenced selective biotic survival across the KPg boundary.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin-Yue Wang ◽  
Jiang Zhu ◽  
Meijiao Xin ◽  
Chentao Song ◽  
Yadi Li ◽  
...  

AbstractPrecipitation in the equatorial African rainforest plays an important role in both the regional hydrological cycle and the global climate variability. Previous studies mostly focus on the trends of drought in recent decades or long-time scales. Using two observational datasets, we reveal a remarkable weakening of the seasonal precipitation cycle over this region from 1979 to 2015, with precipitation significantly increased in the boreal winter dry season (~ 0.13 mm/day/decade) and decreased in the boreal spring wet season (~ 0.21 mm/day/decade), which account for ~ 14% (the precipitation changes from 1979 to 2015) of their respective climatological means. We further use a state-of-the-art atmospheric model to isolate the impact of sea surface temperature change from different ocean basins on the precipitation changes in the dry and wet seasons. Results show that the strengthening precipitation in the dry season is mainly driven by the Atlantic warming, whereas the weakening precipitation in the wet season can be primarily attributed to the Indian Ocean. Warming Atlantic intensifies the zonal circulation over the African rainforest, strengthening moisture convergence and intensifying precipitation in the boreal winter dry season. Warming Indian Ocean contributes more to reducing the zonal circulation and suppressing the convection in the boreal spring wet season, leading to an opposite effect on precipitation. This result has important implication on local ecology as well as global climate system.


2021 ◽  
Author(s):  
Ingo Richter ◽  
Yu Kosaka ◽  
Hiroki Tokinaga ◽  
Shoichiro Kido

<p>The potential influence of the tropical Atlantic on the development of ENSO has received increased attention over recent years. In particular equatorial Atlantic variability (also known as the Atlantic zonal mode or AZM) has been shown to be anticorrelated with ENSO, i.e. cold AZM events in boreal summer (JJA) tend to be followed by El Niño in winter (DJF), and vice versa for warm AZM events. One problem with disentangling the two-way interaction between the equatorial Atlantic and Pacific is that both ENSO and the AZM tend to develop in boreal spring (MAM).</p><p>Here we use a set of GCM sensitivity experiments to quantify the strength of the Atlantic-Pacific link. The starting point is a 1000-year free-running control simulation with the GFDL CM 2.1 model. From this control simulation, we pick years in which a cold AZM event in JJA is followed by an El Niño in DJF. These years serve as initial conditions for “perfect model” prediction experiments with 10 ensemble members each. In the control experiments, the predictions evolve freely for 12 months from January 1 of each selected year. In the second set of predictions, SSTs are gradually relaxed to climatology in the tropical Atlantic, so that the cold AZM event is suppressed. In the third set of predictions, we restore the tropical Pacific SSTs to climatology, so that the El Niño event is suppressed.</p><p>The results suggest that, on average, the tropical Atlantic SST anomalies increase the strength of El Niño in the following winter by about 10-20%. If, on the other hand, El Niño development is suppressed, the amplitude of the cold AZM event also reduces by a similar amount. The results suggest that, in the context of this GCM, the influence of AZM events on ENSO development is relatively weak but not negligible. The fact that ENSO also influences the AZM in boreal spring highlights the complex two-way interaction between these two modes of variability.</p>


2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

<p>Using the Gauss–Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Niño-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.</p>


2021 ◽  
Author(s):  
Johannes Quaas ◽  
Edward Gryspeerdt ◽  
Robert Vautard ◽  
Olivier Boucher

<p>Aircraft produce contrail in suitable atmospheric conditions, and these may spread out into cirrus. However, it is unclear how large this effect and its implied radiative forcing is. Here we use the opportunity of the COVID-19 related aircraft traffic reduction in boreal spring 2020 in comparison to the traffic in 2019 to assess satellite data. MODIS retrievals are examined for 2020 vs. the climatology 2011 to 2019. In order to account for weather variability, circulation analogues are defined for each region and day of the Spring 2020 period, and the cirrus coverage and emissivity in springtimes 2011 - 2019 is assessed for comparison to 2020. In conclusion, we find that cirrus are reduced by 9±1.5% in absolute terms. This is consistent with a trend analysis. The implied radiative forcing by aviation-induced cirrus is assessed at 49±28 Wm-2. </p>


2021 ◽  
Author(s):  
Xiang-Hui Fang ◽  
Fei Zheng

AbstractRealistic simulation and accurate prediction of El Niño-Southern Oscillation (ENSO) is still a challenge. One fundamental obstacle is the so-called spring predictability barrier (SPB), which features a low predictive skill of the ENSO with prediction across boreal spring. Our observational analysis shows that the leading empirical orthogonal function mode of the seasonal Niño3.4 index evolution (i.e., from May to the following April) explains nearly 90% of its total variance, and the principle component is almost identical to the Niño3.4 index in the mature phase. This means a good ENSO prediction for a year ranging May-next April can be achieved if the Niño3.4 index in the mature phase is accurately obtained in advance. In this work, by extracting physically oriented variables in the spring, a linear regression approach that can reproduce the mature ENSO phases in observation is firstly proposed. Further investigation indicates that the specific equation, however, is significantly modulated by an interdecadal regime shift in the air–sea coupled system in the tropical Pacific. During 1980–1999, ocean adjustment and vertical processes were dominant, and the recharge oscillator theory was effective to capture the ENSO evolutions. While, during 2000–2018, zonal advection and thermodynamics became important, and successful prediction essentially relies on the wind stress information and their controlled processes, both zonally and meridionally. These results imply that accounting for the interdecadal regime shift of the tropical Pacific coupled system and the dominant processes in spring in modulating the ENSO evolution could reduce the impact of SPB and improve ENSO prediction.


2021 ◽  
Author(s):  
Catherine Wilka ◽  
Susan Solomon ◽  
Doug Kinnison ◽  
David Tarasick

Abstract. Without the Montreal Protocol the already extreme Arctic ozone losses in boreal spring of 2020 would be expected to have produced an Antarctic-like ozone hole, with an area of total ozone below 220 DU of about 20 million km2. Record observed local lows of 0.1 ppmv at some altitudes in the lower stratosphere would have reached 0.01, again similar to the Antarctic. This provides an opportunity to test parameterizations of polar stratospheric cloud impacts on denitrification, and thereby to improve stratospheric models. Spring ozone depletion would have begun earlier and lasted longer without the Montreal Protocol, and by 2020 the year-round ozone depletion would have begun to dramatically diverge from the observed case. This study reinforces that the historically extreme 2020 Arctic ozone depletion is not cause for concern over the Montreal Protocol's effectiveness, but rather demonstrates that the Montreal Protocol indeed merits celebration for avoiding an Arctic ozone hole.


Sign in / Sign up

Export Citation Format

Share Document