THU-375-Transcription factor TRIM33 controls liver progenitor cell towards hepatocyte differentiation through synergizing with SMAD2/3 following massive parenchymal loss

2019 ◽  
Vol 70 (1) ◽  
pp. e318-e319 ◽  
Author(s):  
Tao Lin ◽  
Shanshan Wang ◽  
Chen Shao ◽  
Xiaodong Yuan ◽  
Franziska Wandrer ◽  
...  
2012 ◽  
Vol 23 (15) ◽  
pp. 2845-2855 ◽  
Author(s):  
Kazunori Senga ◽  
Keith E. Mostov ◽  
Toshihiro Mitaka ◽  
Atsushi Miyajima ◽  
Naoki Tanimizu

During development, epithelial progenitors establish intercellular junctions, including tight junctions (TJs), and form three-dimensional (3D) tissue structures, which are often associated with luminal structures. Here we identify grainyhead-like 2 (Grhl2) as a transcription factor that regulates the size of luminal space surrounded by polarized epithelial cells. We show that HPPL, a liver progenitor cell line, transfected with Grhl2 cDNA forms remarkably larger cysts than the control cells in 3D cultures. We find that Grhl2 up-regulates claudin (Cldn) 3 and Cldn4, and their functions are necessary for the formation of large cysts. Overexpression of Cldn3 alone induces the cyst expansion. In contrast, expression of Cldn4 alone does not induce expansion, as it is not localized at TJs. Of interest, Rab25, another Grhl2 target, not only increases the Cldn4 protein, but also enhances its localization at TJs. Taken together, the results indicate that Grhl2 regulates epithelial morphogenesis through transcriptional up-regulation of Cldn3 and Cldn4, as well as of Rab25, which increases the Cldn4 protein and its localization at TJs. The results reveal a molecular network regulating epithelial lumen formation organized by Grhl2.


2015 ◽  
Vol 22 (7) ◽  
pp. 546-550 ◽  
Author(s):  
Cindy Yuet-Yin Kok ◽  
Atsushi Miyajima ◽  
Tohru Itoh

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rebecca L Scotland ◽  
Xiaozhong Shi ◽  
Anwarul Ferdous ◽  
Michael Kyba ◽  
Daniel J Garry

C-kit-ligand, also known as stem cell factor, is expressed broadly and has a functional role during hematopoesis, gametogenesis, melanogenesis, mast cell growth and differentiation. Although the receptor for c-kit-ligand, c-kit, has been utilized as a marker to identify cardiac stem cell and progenitor cell populations, the transcriptional regulation and biological function of c-kit-ligand during cardiogenesis has not been defined. Here we demonstrate that c-kit-ligand is a novel downstream target of Nkx2–5. The homeodomain transcription factor, Nkx2–5, is one of the earliest markers of the cardiac lineage and mice lacking this transcription factor are nonviable. To identify potential Nkx2–5 downstream target genes, we utilized ES/EBs that were engineered to overexpress Nkx2–5 and undertook transcriptome analysis of embyroid bodies with and without Nkx2–5 induction. We observed a significant increase in c-kit-ligand expression following Nkx2–5 induction suggesting a role for Nkx2–5 in the activation of c-kit-ligand. Furthermore, analysis of the c-kit-ligand promoter revealed three evolutionarily conserved Nkx2–5 response elements, supporting the notion that Nkx2–5 is a transcriptional regulator of gene expression. We undertook transcriptional assays and transfected the c-kit-ligand promoter-luciferase reporter in the absence and presence of increasing amounts of Nkx2–5. We observed that Nkx2–5, in a dose dependent fashion, was a potent transcriptional activator of c-kit-ligand. These studies enhance our understanding of Nkx2–5 mediated transcriptional networks and further emphasize that Nkx2–5 is an important transcriptional regulator of cardiac progenitor cell populations.


2012 ◽  
Vol 142 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Ilaria Laudadio ◽  
Isabelle Manfroid ◽  
Younes Achouri ◽  
Dominic Schmidt ◽  
Michael D. Wilson ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 157-170 ◽  
Author(s):  
Mehwish Khaliq ◽  
Sungjin Ko ◽  
Yinzi Liu ◽  
Hualin Wang ◽  
Yonghua Sun ◽  
...  

2008 ◽  
Vol 48 ◽  
pp. S199
Author(s):  
B. Spee ◽  
S. Vanderborght ◽  
M. Komuta ◽  
G. Carpino ◽  
B.A. Schotanus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document