lumen formation
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 52)

H-INDEX

50
(FIVE YEARS 3)

2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lijie Du ◽  
Lei Zhang ◽  
Junhong Zhao ◽  
Zixiu Chen ◽  
Xiang Liu ◽  
...  

2021 ◽  
Author(s):  
Jia Chen ◽  
Daniel St Johnston

AbstractIn the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighboring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into pre-apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction dissolves and the pre-enterocyte reaches the gut lumen with a fully-formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.


Author(s):  
Zheying Sun ◽  
Scott S. Kemp ◽  
Prisca K. Lin ◽  
Kalia N. Aguera ◽  
George E. Davis

Objective: We sought to determine how endothelial cell (EC) expression of the activating k-Ras mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src, Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal–related kinase), and Akt activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. Conclusions: Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Ting Wang ◽  
Marie-Ève Proulx ◽  
Anne D. Kim ◽  
Virginie Lelarge ◽  
Luke McCaffrey

AbstractApical-basal cell polarity and lumen formation are essential features of many epithelial tissues, which are disrupted in diseases like cancer. Here, we describe a proteomics-based screen to identify proteins involved in lumen formation in three-dimensional spheroid cultures. We established a suspension-based culture method suitable for generating polarized cysts in sufficient quantities for proteomic analysis. Using this approach, we identified several known and unknown proteins proximally associated with PAR6B, an apical protein involved in lumen formation. Functional analyses of candidates identified PARD3B (a homolog of PARD3), RALB, and HRNR as regulators of lumen formation. We also identified PTPN14 as a component of the Par-complex that is required for fidelity of apical-basal polarity. Cells transformed with KRASG12V exhibit lumen collapse/filling concomitant with disruption of the Par-complex and down-regulation of PTPN14. Enforced expression of PTPN14 maintained the lumen and restricted the transformed phenotype in KRASG12V-expressing cells. This represents an applicable approach to explore protein–protein interactions in three-dimensional culture and to identify proteins important for lumen maintenance in normal and oncogene-expressing cells.


2021 ◽  
pp. 101354
Author(s):  
Vlad Tocan ◽  
Junya Hayase ◽  
Sachiko Kamakura ◽  
Akira Kohda ◽  
Shouichi Ohga ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Claudia G. Vasquez ◽  
Vipul T. Vachharajani ◽  
Carlos Garzon-Coral ◽  
Alexander R. Dunn

AbstractThe formation of a hollow lumen in a formerly solid mass of cells is a key developmental process whose dysregulation leads to diseases of the kidney and other organs. Hydrostatic pressure has been proposed to drive lumen expansion, a view that is supported by experiments in the mouse blastocyst. However, lumens formed in other tissues adopt irregular shapes with cell apical faces that are bowed inward, suggesting that pressure may not be the dominant contributor to lumen shape in all cases. Here we use live-cell imaging to study the physical mechanism of lumen formation in Madin-Darby Canine Kidney cell spheroids, a canonical cell-culture model for lumenogenesis. We find that in this system, lumen shape reflects basic geometrical considerations tied to the establishment of apico-basal polarity. A physical model incorporating both cell geometry and intraluminal pressure can account for our observations as well as cases in which pressure plays a dominant role.


2021 ◽  
Author(s):  
Jorian J. Sepers ◽  
João J. Ramalho ◽  
Jason R. Kroll ◽  
Ruben Schmidt ◽  
Mike Boxem

AbstractReorganization of the plasma membrane and underlying actin cytoskeleton into specialized domains is essential for the functioning of most polarized cells in animals. Proteins of the ezrin-radixin-moesin (ERM) and Na+/H+ exchanger 3 regulating factor (NHERF) family are conserved regulators of cortical specialization. ERM proteins function as membrane-actin linkers and as molecular scaffolds that organize the distribution of proteins at the membrane. NHERF proteins are PDZ-domain containing adapters that can bind to ERM proteins and extend their scaffolding capability. Here, we investigate how ERM and NHERF proteins function in regulating intestinal lumen formation in the nematode Caenorhabditis elegans. C. elegans has single ERM and NHERF family proteins, termed ERM-1 and NRFL-1, and ERM-1 was previously shown to be critical for intestinal lumen formation. Using CRISPR/Cas9-generated nrfl-1 alleles we demonstrate that NRFL-1 localizes at the intestinal microvilli, and that this localization is depended on an interaction with ERM-1. However, nrfl-1 loss of function mutants are viable and do not show defect in intestinal development. Interestingly, combining nrfl-1 loss with erm-1 mutants that either block or mimic phosphorylation of a regulatory C-terminal threonine causes severe defects in intestinal lumen formation. These defects are not observed in the phosphorylation mutants alone, and resemble the effects of strong erm-1 loss of function. The loss of NRFL-1 did not affect the localization or activity of ERM-1. Together, these data indicate that ERM-1 and NRFL-1 function together in intestinal lumen formation in C. elegans. We postulate that the functioning of ERM-1 in this tissue involves actin-binding activities that are regulated by the C-terminal threonine residue and the organization of apical domain composition through NRFL-1.


Author(s):  
Donghyun Kim ◽  
Yeo-Jun Yoon ◽  
Dojin Choi ◽  
Jisun Kim ◽  
Jae-Yol Lim

Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.


2021 ◽  
Vol 4 (10) ◽  
pp. e202000942
Author(s):  
Jimpi Langthasa ◽  
Purba Sarkar ◽  
Shruthi Narayanan ◽  
Rahul Bhagat ◽  
Annapurna Vadaparty ◽  
...  

Ovarian cancer metastasizes into peritoneum through dissemination of transformed epithelia as multicellular spheroids. Harvested from the malignant ascites of patients, spheroids exhibit startling features of organization typical to homeostatic glandular tissues: lumen surrounded by smoothly contoured and adhered epithelia. Herein, we demonstrate that cells of specific ovarian cancer lines in suspension, aggregate into dysmorphic solid “moruloid” clusters that permit intercellular movement, cell penetration, and interspheroidal coalescence. Moruloid clusters subsequently mature into “blastuloid” spheroids with smooth contours, a temporally dynamic lumen and immotile cells. Blastuloid spheroids neither coalesce nor allow cell penetration. Ultrastructural examination reveals a basement membrane-like extracellular matrix coat on the surface of blastuloid, but not moruloid, spheroids. Quantitative proteomics reveals down-regulation in ECM protein Fibronectin-1 associated with the moruloid-blastuloid transition; immunocytochemistry also confirms the relocalization of basement membrane ECM proteins: collagen IV and laminin to the surface of blastuloid spheroids. Fibronectin depletion accelerates, and enzymatic basement membrane debridement impairs, lumen formation, respectively. The regulation by ECM dynamics of the morphogenesis of cancer spheroids potentially influences the progression of the disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li-Ting Wang ◽  
Abira Rajah ◽  
Claire M. Brown ◽  
Luke McCaffrey

AbstractPolarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


Sign in / Sign up

Export Citation Format

Share Document