A study on instantaneous cutting force coefficients in face milling

1997 ◽  
Vol 37 (10) ◽  
pp. 1393-1408 ◽  
Author(s):  
P.J. Cheng ◽  
J.T. Tsay ◽  
S.C. Lin
2005 ◽  
Vol 127 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Hoon Ko ◽  
Dong-Woo Cho

Application of a ball-end milling process model to a CAD/CAM or CAPP system requires a generalized methodology to determine the cutting force coefficients for different cutting conditions. In this paper, we propose a mechanistic cutting force model for 3D ball-end milling using instantaneous cutting force coefficients that are independent of the cutting conditions. The uncut chip thickness model for three-dimensional machining considers cutter deflection and runout. An in-depth analysis of the characteristics of these cutting force coefficients, which can be determined from only a few test cuts, is provided. For more accurate cutting force predictions, the size effect is also modeled using the cutter edge length of the ball-end mill and is incorporated into the cutting force model. This method of estimating the 3D ball-end milling force coefficients has been tested experimentally for various cutting conditions.


2014 ◽  
Vol 887-888 ◽  
pp. 1179-1183 ◽  
Author(s):  
Hong Yan Hao ◽  
Wen Cheng Tang ◽  
Bao Sheng Wang

Cutting force coefficients and cutter runout parameters are the key factors for accurate prediction of instantaneous milling forces. A new two-step identification method is presented to calibrate them in end milling. Based on analyzing effects of cutter runout on milling forces, a method of extracting nominal milling forces from measured milling forces is proposed. By calibrating average cutting force coefficients and corresponding average chip thickness, an approach to evaluate the instantaneous cutting force coefficients is proposed. Then, an iterative method is presented to identify cutter runout, and the procedure is also given in detail. Milling tests are performed to test the proposed method, and validity of the identification approach is proved by a good agreement between predicted results and experimental results.


Author(s):  
Nhu-Tung Nguyen

This paper presents a modeling method of cutting force and a combination approach of theory and experimental methods in the determination of cutting force coefficients in the face milling process using a parallelogram insert. By the theoretical method, the cutting forces were modeled by a mathematical function of cutting cutter geometry (Cutter diameter, the number of inserts, the insert nose radius, insert cutting edge helix angle, etc.), cutting conditions (depth of cut, feed per flute, spindle speed, etc.), and cutting force coefficients (shear force coefficients, edge force coefficients). By the theoretical method, the average cutting forces in three directions (feed – x, normal – y, and axial – z) were modeled as the linear functions of feed per flute. By the experimental method, the average cutting forces in these three directions were also regressed as the linear functions of feed per flute with quite large determination coefficients (R2 were larger than 92 %). Then, the relationship of average cutting forces and feed per flute was used to determine all six cutting force coefficient components. The validation experiments were performed to verify the linear function of average cutting forces, to determine the cutting force coefficients, and to verify the cutting force models in the face milling process using a cutter with one parallelogram insert. The cutting force models were successfully verified by comparison of the shape and the values of predicted cutting forces and measured cutting forces. These proposed methods and models can be applied to determine the cutting force coefficients and predict the cutting force in the face milling process using a parallelogram insert and can be extended with other cutting types or other insert types


Sign in / Sign up

Export Citation Format

Share Document