scholarly journals Stochastic Field evolution of disoriented chiral condensates

2003 ◽  
Vol 119 ◽  
pp. 574-576
Author(s):  
Lui´s M.A. Bettencourt
1988 ◽  
Vol 49 (C2) ◽  
pp. C2-259-C2-262 ◽  
Author(s):  
A. DEBARRE ◽  
J.-C. KELLER ◽  
J.-L. LE GOUET ◽  
P. TCHENIO
Keyword(s):  

2018 ◽  
Vol 6 (14) ◽  
pp. 51 ◽  
Author(s):  
Kristin L. Mercer

Agroecology derives much of its strength from interactions between disciplines that produce a holistic perspective on agricultural systems and issues.  Although ongoing integration of social dynamics into agroecology has strengthened the field, evolution and genetics have not been embraced to the same degree, despite the fact that they have been are discussed in some common agroecology texts.  I argue that the field of agroecology could extend its reach and depth by embracing the evolutionary study of agroecosystems.  Areas of evolutionary inquiry with relevance to agriculture focus on long or short term processes, encompass a range of scales, incorporate molecular or quantitative genetic analyses, and explore ecological processes to differing degrees.


1999 ◽  
Vol 518 (2) ◽  
pp. 594-602 ◽  
Author(s):  
Kurt Roettiger ◽  
James M. Stone ◽  
Jack O. Burns

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
V. P. Jovanović ◽  
H. Raffy ◽  
Z. Z. Li ◽  
G. Reményi ◽  
P. Monceau

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 60
Author(s):  
Milo W. Hyde

In this paper, we present a method to independently control the field and irradiance statistics of a partially coherent beam. Prior techniques focus on generating optical field realizations whose ensemble-averaged autocorrelation matches a specified second-order field moment known as the cross-spectral density (CSD) function. Since optical field realizations are assumed to obey Gaussian statistics, these methods do not consider the irradiance moments, as they, by the Gaussian moment theorem, are completely determined by the field’s first and second moments. Our work, by including control over the irradiance statistics (in addition to the CSD function), expands existing synthesis approaches and allows for the design, modeling, and simulation of new partially coherent beams, whose underlying field realizations are not Gaussian distributed. We start with our model for a random optical field realization and then derive expressions relating the ensemble moments of our fields to those of the desired partially coherent beam. We describe in detail how to generate random optical field realizations with the proper statistics. We lastly generate two example partially coherent beams using our method and compare the simulated field and irradiance moments theory to validate our technique.


1995 ◽  
Vol 590 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Sean Gavin

2018 ◽  
Vol 2 (11) ◽  
Author(s):  
Sung Bo Lee ◽  
Seung-Yong Lee ◽  
Seung Jo Yoo ◽  
Yoonkoo Kim ◽  
Jin-Gyu Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document