simulated field
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 30)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Norinobu Katayama ◽  
Kazuhiko Fujisaki ◽  
Takehisa Ueno ◽  
Ryutaro Onishi ◽  
Isamu Yoshitake

The decline in the number of persons of working age is a social problem in Japan. This is a particularly serious concern for workers in the construction field; construction systems should be considered for productivity improvements. Prefabrication systems are an effective method for shortening construction cycles and times. In fact, various precast concrete members have been employed to realize more rapid construction and improvements in quality. Using precast concrete members is difficult because jointless roads are preferable for highway pavement. Continuously reinforced concrete pavement (CRCP), which has the advantages of concrete jointless construction and high ductility, is a suitable method for highway road construction. Typical Japanese highways built with CRCP reduce the amount of horizontal cracking by arranging transverse rebars at an angle of 60° to the main rebars. Note that rebar placement and bonding in conventional CRCP are troublesome and labor intensive owing to the long construction time required. We have developed prefabricated steel bar meshes for CRCP and can report some benefits relating to their practical application. To examine the fundamental properties of mesh panels, we conducted a laboratory experiment and a simulated field test. The primary concern of welded rebars are failures induced by cyclic loading. A flexural fatigue loading test using CRCP models was conducted. In addition, a comparative survey on conventional and prefabrication systems was performed in the simulated field test to quantify the constructability of CRCP and to observe the extent of cracking in concrete. This paper reports on our experimental investigation.


2021 ◽  
pp. 113-139
Author(s):  
Elena Alekseevna Baklanova ◽  
Olga Nikolaevna Stepanova

The purpose of the work is to describe the method of the linguoculturological field (LCF), the features of its application in RFL classes and to demonstrate its capabilities in the aspect of professionalization. The theoretical substantiation of the method is given, the principles of LCF formation in the didactic aspect are formulated and models of three linguistic and cultural fields are presented. The following research methods were used in the work: the method of controlled selection, conceptual analysis, synthesis, field modeling. The authors noted the need for the formation of non-philological specialties among foreign students along with the professional competence of linguistic and cultural competence. This approach can greatly facilitate the process of entry of foreign students into the field of professional language, and also gives them the opportunity to get acquainted with Russian culture at the same time. The latter, in turn, will contribute to the formation of communicative competence, which is necessary for successful study in Russia. It is possible to achieve the simultaneous development of these three competencies by applying the LCF method. As a result, a key concept corresponding to their professionalization develops in the minds of students. For medical students it is a "Russian doctor", for military school students it is a "Russian warrior", for music students it is a "Russian musician". The article traces the connection of linguoculturology, linguistics and professional language. The concept of the linguoculturological field, its structure and units (linguoculturemes) is given. These units are, among other things, vocabulary located at the junction of the mentioned disciplines. Three linguistic and cultural fields have been formed, each of which contains 5 lists of linguistic units: 1) frequently used words; 2) sample contexts; 3) prominent figures in the field; 4) fiction and non-fiction texts; 5) quotes and sayings. These units generally cover the center, periphery and cultural component of each simulated field. It is proposed to organize RCT training, moving from the center to the periphery of the field according to educational centers united by the corresponding cultural theme. Brief recommendations on the implementation of the training center in the thematic plan are also given.


2021 ◽  
Vol 5 (Supplement_S1) ◽  
pp. S125-S128
Author(s):  
Hannah L Walker ◽  
Ulises A Sánchez-Sandoval ◽  
Jesus J Figueroa-Zamudio ◽  
Jovannah Ramirez ◽  
Sergio A Soto-Navarro ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 986
Author(s):  
Keshava Mysore ◽  
Longhua Sun ◽  
Limb K. Hapairai ◽  
Chien-Wei Wang ◽  
Jessica Igiede ◽  
...  

Concerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2280
Author(s):  
Francesco Lucchini ◽  
Nicolò Marconato ◽  
Paolo Bettini

Gas insulated transmission lines (GILs) are used in electrical systems mainly for power transmission and High Voltage substation interconnection. In this paper, we focus on the development of complex numerical tools for the optimization of gas insulated HVDC components by the estimation of realistic electric field distribution and the voltage holding of the designed geometry. In particular, the paper aims at describing the correct modelling approach suitable to study high voltage components in DC, considering the nonlinear behaviour characterizing the electrical conductivity of solid and gas insulators. The simulated field distribution is then adopted to estimate the voltage holding of the dielectric gas, with a convenient engineering technique, based on the streamer criterion. These two tools are integrated in an automatic optimization package developed in COMSOL® and MATLAB®, with the purpose of adjusting the critical geometry features, suffering from excessive electrical stress and possibly giving rise to electrical breakdown, in order to guide the designer towards a robust solution.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
David M. Poché ◽  
Kelsey Dawson ◽  
Batchimeg Tseveenjav ◽  
Richard M. Poché

Abstract Background Lyme disease, caused primarily by Borrelia burgdorferi sensu stricto, is the most prevalent vector-borne disease in the United States. Treatment of rodent pathogen reservoirs with an oral acaricide may suppress the production of infected host-seeking ticks posing a risk for human infection. A previous study showed that an oral fipronil bait effectively controlled larval Ixodes scapularis ticks on white-footed mice (Peromyscus leucopus) up to 15 days post-bait exposure. The present study expands upon this finding by exposing group-housed white-footed mice to fipronil bait under simulated field conditions prior to tick infestation. Methods Mice (n = 80) were housed in groups of 10 within large enclosures and offered a choice between fipronil bait within a commercial bait station and an alternative diet. The mice were assigned to two treatment groups and two control groups to undergo bait exposure durations of either 24 h (reduced) or 168 h (extended). Groups were further differentiated by the time point post-bait exposure when larval ticks were applied to mice within feeding capsules (reduced day 1, day 15; extended day 21, day 35). For 4 days post-tick introduction, attached larvae were observed by microscopy and replete larvae were recovered. Replete larvae were monitored for molting success. Plasma was collected from all treatment group mice to obtain fipronil plasma concentrations (CP). Results The fipronil bait (0.005% fipronil) was palatable and controlled larval ticks on white-footed mice when presented under simulated field conditions. Efficacy in preventing attached larvae from feeding to repletion was 100% (day 1), 89.0% (day 15), 85.8% (day 21), and 75.2% (day 35). When also considering molting success, the fipronil bait prevented 100% (day 1), 91.1% (day 15), 91.7% (day 21), and 82.5% (day 35) of larvae attaching to mice from molting. The mean CP per mouse was 191.5 ng/ml (day 1), 29.4 ng/ml (day 15), 10.6 ng/ml (day 21), and 1.0 ng/ml (day 35). Conclusions The results suggest that fipronil bait will be consumed by white-footed mice in the presence of an alternative diet, and effectively control larval ticks on treated mice. A field trial is needed to confirm the results of this study. Low-dose fipronil bait may provide a cost-effective means of controlling blacklegged ticks to be integrated into tick management programs. Graphical Abstract


2021 ◽  
Author(s):  
Xueli Zheng ◽  
Shanshan Wu ◽  
Yulan He ◽  
Yong Wei ◽  
Peiyang Fan ◽  
...  

The susceptibility of Asian tiger mosquitoes to DENV-2 in different seasons was observed in simulated field environments as a reference to design dengue fever control strategies in Guangzhou. The life table experiments of mosquitoes in four seasons were carried out in the field. The susceptibility of Ae. albopictus to dengue virus was observed in both environments in Guangzhou in summer and winter. Ae. albopictus was infected with dengue virus by oral feeding. On day 7 and 14 after infection, the viral load in the head, ovary, and midgut of the mosquito was detected using real-time fluorescent quantitative PCR. Immune-associated gene expression in infected mosquitoes was performed using quantitative real-time reverse transcriptase PCR. The hatching rate and pupation rate of Ae. albopictus larvae in different seasons differed significantly. The winter hatching rate of larvae was lower than that in summer, and the incubation time was longer than in summer. In the winter field environment, Ae. albopictus still underwent basic growth and development processes. Mosquitoes in the simulated field environment were more susceptible to DENV-2 than those in the simulated laboratory environment. In the midgut, viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 14.459, P = 0.01); ovarian viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 8.656, P < 0.001), but there was no significant difference in the viral load at other time points (P > 0.05). Dicer-2 mRNA expression on day 7 in winter was 4.071 times than that on day 7 in summer: the viral load and Dicer-2 expression correlated moderately. Ae. albopictus could still develop and transmit dengue virus in winter in Guangzhou. Mosquitoes under simulated field conditions were more susceptible to DENV-2 than those under simulated laboratory conditions.


2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Deep saline formations are considered as potential sites for geological carbon storage (GCS). To better understand the CO2 trapping mechanism in saline aquifers, it is necessary to develop robust tools to evaluate CO2 trapping efficiency. This paper introduces the application of Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF) to predict CO2 trapping efficiency in saline formations. First, the uncertainty variables, including geologic parameters, petrophysical properties, and other physical characteristics data were utilized to create a training dataset. A total of 101 reservoir simulation samples were then performed, and the residual trapping, solubility trapping, and cumulative CO2 injection were collected. The predicted results indicate that three machine learning (ML) models that evaluate performance from high to low: GPR, SVM, and RF can be selected to predict the CO2 trapping efficiency in deep saline formations. The GPR model has an excellent CO2 trapping prediction efficiency with the highest correlation factor (R2 = 0.992) and lowest root mean square error (RMSE = 0.00491). The accuracy and stability of the GPR models were verified for an actual reservoir in offshore Vietnam. The predictive models obtained a good agreement between the simulated field and the predicted trapping index. These findings indicate that the GPR ML models can support the numerical simulation as a robust predictive tool for estimating the performance of CO2 trapping in the subsurface.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250893
Author(s):  
Alvaro E. Eiras ◽  
Laila H. Costa ◽  
Luciane G. Batista-Pereira ◽  
Kelly S. Paixão ◽  
Elis P. A. Batista

The mosquito Aedes aegypti is the main vector of arboviroses and current approaches to control this vector are not sufficiently effective. Adult traps, such as the BG-Sentinel (BGS), have been successfully used for mosquito surveillance and can also suppress vector populations. A new “passive” trap for gravid Ae. aegypti (Gravid Aedes Trap—GAT) has been shown efficient for Aedes collection and suppress Ae. albopictus populations using mass trapping techniques. Here the GAT was evaluated for the first time as a new tool to control Ae. aegypti in semi-field conditions using simulated outdoor environments (SOE). Two identical large screened chambers inside of a SOE containing different numbers and sizes of artificial breeding sites were used to assess the trapping efficiency of the GAT. One hundred mosquitoes were released into the chambers, and recapture rates evaluated after 48h. The parity status of the captured mosquitoes was also recorded. The number of eggs laid, and breeding productivity were also monitored when using different numbers and sizes of breeding sites. The BGS trap was used here as a control (gold standard) trap to compare capture rates to those of the GAT. The GAT recaptured between 50–65% of the mosquitoes independent of the number and sizes of the breeding sites in the SOEs, whereas the BGS recaptured 60–82% of the females. Both traps showed similar results regarding to the parity status of recaptured mosquitoes. Our results confirmed the effectiveness of GAT for the capture of adult female Ae. aegypti in simulated field environments. The BGS trap recaptured gravid Ae. aegypti before egg-laying in different sizes and number of breading sites, whereas the oviposition activity occurred prior to recapture mosquitoes in the GAT. Based on the results, we believe that GAT is a promising candidate for mass-trapping intervention in urban settings, but a source reduction intervention should be made prior trap deployment. Therefore, we suggest future field studies to confirm the use of GAT as a complementary tool in vector control activities.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhe Ni ◽  
Yongqiang Cao ◽  
Xia Jin ◽  
Zhuomin Fu ◽  
Jianyuan Li ◽  
...  

Abstract Background Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo. Findings We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types. Conclusions In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.


Sign in / Sign up

Export Citation Format

Share Document