Reverse Monte Carlo investigation of the short-range order in α-VD0.8

2004 ◽  
Vol 363 (1-2) ◽  
pp. 214-221 ◽  
Author(s):  
M.H Sørby ◽  
A Mellergård ◽  
R.G Delaplane ◽  
A Wannberg ◽  
B.C Hauback ◽  
...  
2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


1987 ◽  
Vol 103 ◽  
Author(s):  
M. Atzmon

ABSTRACTInterdiffusion in a two-dimensional compositionally modulated lattice has been studied by Monte-Carlo simulations. In the initial stages, the interdiffusion coefficient has been observed to change with time due to the development of short-range order simultaneously with the interdiffusion process. When the short-range order parameter approached its limiting value, the diffusion coefficient approached a constant value. The dependence of the interdiffusion coefficient on the modulation wavelength does not agree with the prediction of one-dimensional theories. For ordering alloy systems, the effective interdiffusion coefficient is positive, i.e., an initially present modulation decays in time, for all wavelengths.


Sign in / Sign up

Export Citation Format

Share Document