Copper (II) selective electrode based on chalcogenide materials: study of the membrane/solution interface with electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy

2002 ◽  
Vol 21 (1-2) ◽  
pp. 3-8 ◽  
Author(s):  
C. Cali ◽  
D. Foix ◽  
G. Taillades ◽  
E. Siebert ◽  
D. Gonbeau ◽  
...  
Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 947
Author(s):  
Raffael Rameshan ◽  
Andreas Nenning ◽  
Johannes Raschhofer ◽  
Lorenz Lindenthal ◽  
Thomas Ruh ◽  
...  

For an in-depth characterization of catalytic materials and their properties, spectroscopic in-situ (operando) investigations are indispensable. With the rapid development of advanced commercial spectroscopic equipment, it is possible to combine complementary methods in a single system. This allows for simultaneously gaining insights into surface and bulk properties of functional oxides, such as defect chemistry, catalytic characteristics, electronic structure, etc., enabling a direct correlation of structure and reactivity of catalyst materials, thus facilitating effective catalyst development. Here, we present a novel sample-stage, which was specifically developed to pave the way to a lab–based combination of near ambient pressure X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy with simultaneous catalytic operando measurements. This setup is designed to probe different (model) systems under conditions close to real heterogeneous catalysis, with a focus on solid oxide electrochemical cells. In a proof of concept experiment using an electrochemical model cell with the doped perovskite Nd0.6Ca0.4Fe0.9Co0.1O3-δ as working electrode, the precise control of the surface chemistry that is possible with this setup is demonstrated. The exsolution behavior of the material was studied, showing that at a lower temperature (500 °C) with lower reducing potential of the gas phase, only cobalt was exsolved, forming metallic particles on the surface of the perovskite-type oxide. Only when the temperature was increased to 600 °C and a cathodic potential was applied (−250 mV) Fe also started to be released from the perovskite lattice.


2021 ◽  
Vol 406 ◽  
pp. 265-273
Author(s):  
Hakima Hachelef ◽  
Abdallah Khelifa ◽  
Abderrahim Benmoussat

The behaviour of a corrosion inhibitor based on proplolis extract via an iron alloy immersed in an electrolyte containing ethylene glycol water in NaCl 0.1 M was evaluated by a stationary technique not destructive which is the technique of electrochemical impedance. The diameter of the Nyquist curves increases with the increase of the concentration of propolis extract and it reaches an optimum concentration at 1.25 g / L, the maximum surface coverage percent at this concentration is 71.98% .The activation parameters reveal that the inhibitor molecules on iron surface are absorbed by physisorption and a chimisorption and obey Langmuir isotherm adsorption. These results were supplemented by Scanning electron microscopy (SEM) and (EDX) spectrum of chemical composition. The metal solution interface is simulated as a physical model by using electrochemical impedance spectroscopy (EIS). Keywords: Iron Alloy, Propolis extract, ethylene glycol;, Lamgmuir isotherm, Electrochemical impedance Spectroscopy (EIS).


Sign in / Sign up

Export Citation Format

Share Document