Boundary element method based on a new second kind integral equation formulation

1996 ◽  
Vol 17 (4) ◽  
pp. 313-320 ◽  
Author(s):  
T. Tran-Cong ◽  
T. Nguyen-Thien ◽  
N. Phan-Thien
1993 ◽  
Vol 01 (03) ◽  
pp. 335-353 ◽  
Author(s):  
R. A. MARSCHALL

A relatively straightforward Boundary Element Method (BEM) for the numerical solution of the exterior Helmholtz problem is specified in a tutorial fashion. The algorithm employs the Combined Helmholtz Integral Equation Formulation (CHIEF) and then Singular Value Decomposition (SVD) to solve the resulting system. Its accuracy and convergence characteristics are examined, and compared to the simplest boundary element method for exterior acoustics, the Helmholtz Integral Equation Formulation or HIEF. Boundary element and auxiliary (CHIEF) point requirements to obtain BEM solutions of a desired accuracy are described. This particular CHIEF algorithm is found to largely avoid the numerical difficulties of the HIEF technique while retaining theoretical and practical implementation simplicity.


1987 ◽  
Vol 109 (1) ◽  
pp. 15-21 ◽  
Author(s):  
A. F. Seybert ◽  
C. Y. R. Cheng

This paper is concerned with the application of the Boundary Element Method (BEM) to interior acoustics problems governed by the reduced wave (Helmholtz) differential equation. The development of an integral equation valid at the boundary of the interior region follows a similar formulation for exterior problems, except for interior problems the Sommerfeld radiation condition is not invoked. The boundary integral equation for interior problems does not suffer from the nonuniqueness difficulty associated with the boundary integral equation formulation for exterior problems. The boundary integral equation, once obtained, is solved for a specific geometry using quadratic isoparametric surface elements. A simplification for axisymmetric cavities and boundary conditions permits the solution to be obtained using line elements on the generator of the cavity. The present formulation includes the case where a node may be placed at a position on the boundary where there is not a unique tangent plane (e.g., at an edge or a corner point). The BEM capability is demonstrated for two types of classical interior axisymmetric problems: the acoustic response of a cavity and the transmission loss of a muffler. For the cavity response comparison data are provided by an analytical solution. For the muffler problem the BEM solution is compared to data obtained by a finite element method analysis.


2016 ◽  
Vol 19 (4) ◽  
pp. 970-997 ◽  
Author(s):  
Brian Zinser ◽  
Wei Cai

AbstractIn this paper, we will present a high-order, well-conditioned boundary element method (BEM) based on Müller's hypersingular second kind integral equation formulation to accurately compute electrostatic potentials in the presence of inhomogeneity embedded within layered media. We consider two types of inhomogeneities: the first one is a simple model of an ion channel which consists of a finite height cylindrical cavity embedded in a layered electrolytes/membrane environment, and the second one is a Janus particle made of two different semi-spherical dielectric materials. Both types of inhomogeneities have relevant applications in biology and colloidal material, respectively. The proposed BEM gives condition numbers, allowing fast convergence of iterative solvers compared to previous work using first kind of integral equations. We also show that the second order basis converges faster and is more accurate than the first order basis for the BEM.


1988 ◽  
Vol 55 (4) ◽  
pp. 786-794 ◽  
Author(s):  
H. Okada ◽  
H. Rajiyah ◽  
S. N. Atluri

The boundary element method (BEM) in current usage, is based on the displacement boundary integral equation. The current practice of computing stresses in the BEM involves the use of a two-tier approach: (i) numerical differentiation of the displacement field at the boundary, and (ii) analytical differentiation of the displacement integral equation at the source point in the interior. A new direct integral equation for the displacement gradient is proposed here, to obviate this two-tier approach. The new direct boundary integral equation for displacement gradients has a lower order singularity than in the standard formulation, and is quite tractable from a numerical view point. Numerical results are presented to illustrate the advantages of the present approach.


Sign in / Sign up

Export Citation Format

Share Document