A multipole direct and indirect BEM for 2D cavity flow at low Reynolds number

1997 ◽  
Vol 19 (1) ◽  
pp. 17-31 ◽  
Author(s):  
J.E. Gómez ◽  
H. Powert
Author(s):  
Timothy R. Palmer ◽  
Choon S. Tan ◽  
Matthew Montgomery ◽  
Anthony Malandra ◽  
David Little ◽  
...  

A potential means of significantly reducing the cavity exit mixing loss, a dominant primary loss mechanism in turbine tip shroud cavity flow, is assessed. The operational constraints on the turbine stage dictate that losses may only be mitigated through configuration changes within the cavity. A configuration, known herein as the Hybrid Blade, features a shrouded main blade with a row of high aspect ratio bladelets affixed to the rotating shroud is formulated and shown to nearly eliminate the cavity exit mixing loss. However the Hybrid Blade configuration incurs a penalty associated with bladelet low Reynolds number effects, cavity inlet flow asymmetry introduced by the scalloped shroud, and a resulting mismatch with the upstream vane as well as downstream diffuser. This penalty offsets the efficiency gain from mitigating cavity exit mixing loss. For the Hybrid Blade system, it can thus be inferred that the turbine stage and the diffuser need to be reconfigured to accommodate the modified tip shroud, and the bladelets redesigned for low Reynolds number operation and cavity inlet flow asymmetry to achieve an overall benefit.


2018 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Muhammad Zal Aminullah Daman Huri ◽  
Shabudin Bin Mat ◽  
Mazuriah Said ◽  
Shuhaimi Mansor ◽  
Md. Nizam Dahalan ◽  
...  

Author(s):  
Vadim V. Lemanov ◽  
Viktor I. Terekhov ◽  
Vladimir V. Terekhov

Sign in / Sign up

Export Citation Format

Share Document