turbine stage
Recently Published Documents


TOTAL DOCUMENTS

728
(FIVE YEARS 91)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
pp. 1-13
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1816
Author(s):  
Marek Klimko ◽  
Richard Lenhard ◽  
Pavel Žitek ◽  
Katarína Kaduchová

The article describes the measurement methods and data evaluation from a single-stage axial turbine with high reaction (50%). Four operating modes of the turbine were selected, in which the wake traversing behind nozzle and bucket with five-hole pneumatic probes took place. The article further focuses on the evaluation of bucket losses for all four measured operating modes, including the analysis of measurement uncertainties.


2021 ◽  
pp. 1-22
Author(s):  
Alex Mesny ◽  
Mark Glozier ◽  
Oliver J Pountney ◽  
James Scobie ◽  
Yansheng Li ◽  
...  

Abstract The use of purge flow in gas turbines allows for high turbine entry temperatures, which are essential to produce high cycle efficiency. Purge air is bled from the compressor and reintroduced in the turbine to cool vulnerable components. Wheel-spaces are formed between adjacent rotating and stationary discs, with purge air supplied at low radius before exiting into the mainstream gas-path through a rim-seal at the disc periphery. An aerodynamic penalty is incurred as the purge flow egress interacts with the mainstream. This study presents unparalleled three-dimensional velocity data from a single-stage turbine test rig, specifically designed to investigate egressmainstream interaction using optical measurement techniques. Volumetric Velocimetry is applied to the rotating environment with phase-locked measurements used to identify and track the vortical secondary flow features through the blade passage. A baseline case without purge flow is compared to experiments with a 1.7% purge mass fraction; the latter was chosen to ensure a fully sealed wheel-space. A non-localised vortex tracking function is applied to the data to identify the position of the core centroids. The strength of the secondary-flow vortices was determined by using a circulation criterion on rotated planes aligned to the vortex filaments........[abridged]


2021 ◽  
pp. 1-14
Author(s):  
Andrea Notaristefano ◽  
Paolo Gaetani

Abstract The harsh environment exiting modern gas turbine combustion chamber is characterized by vorticity and temperature perturbations, the latter commonly referred as entropy waves. The interaction of these unsteadiness with the first turbine stage causes non-negligible effects on the aerodynamic performance, blade cooling and noise production. The first of these drawbacks is addressed in this paper by means of an experimental campaign: entropy waves and swirl profile are injected upstream of an axial turbine stage through a novel combustor simulator. Two injection positions and different inlet conditions are considered. Steady and unsteady experimental measurements are carried out through the stage to address the combustor-turbine interaction characterizing the injected disturbance, the nozzle and rotor outlet aerothermal field. The experimental outcomes show a severe reduction of the temperature perturbation already at stator outlet. The generated swirl profile influences significantly the aerodynamic, as it interacts with the stator and rotor secondary flows and wakes. Furthermore, the clocking position changes the region most affected by the disturbance, showing a potential modifying the injection position to minimize the entropy wave and swirl profile impact on the stage. Finally, this work shows that in order to proficiently study entropy waves, the unsteady aerodynamic flow field stator downstream has to be addressed.


Author(s):  
Wolfgang Sanz ◽  
David Scheier

The flow in a transonic turbine stage still poses a high challenge for the correct prediction of turbulence using an eddy viscosity model. Therefore, an unsteady RANS simulation with the k-ω SST model, based on a preceding study of turbulence inlet conditions, was performed to see if this can improve the quality of the flow and turbulence prediction of an experimentally investigated turbine flow. Unsteady Q3D results showed that none of the different turbulence boundary conditions could predict the free-stream turbulence level and the maximum values correctly. Luckily, the influence of the boundary conditions on the velocity field proved to be small. The qualitative prediction of the complex secondary flows is good, but there is lacking agreement in the prediction of turbulence generation and destruction.


Author(s):  
Antoine Gauvin-Verville ◽  
Patrick K. Dubois ◽  
Benoit Picard ◽  
Alexandre Landry-Blais ◽  
Jean-Sébastien Plante ◽  
...  

Abstract Increasing turbine inlet temperature (TIT) of recuperated gas turbines would lead to simultaneously high efficiency and power density, making them prime candidates for low-emission aeronautics applications, such as hybrid-electric aircraft. The Inside-out Ceramic Turbine (ICT) architecture achieves high TIT by using compression-loaded monolithic ceramics. To resist inertial forces due to blade tip speed exceeding 450 m/s, the shroud of the ICT is made of carbon-polymer composite, wound around a metallic cooling ring. This paper demonstrates that it is beneficial to use a titanium alloy cooling ring with a thermal barrier coating (TBC), rather than nickel superalloys, for the interstitial cooling ring protecting the carbon-polymer from the hot combustion gases. A numerical Design of Experiments (DOE) analysis shows the design trade-offs between the minimum safety factor and the required cooling power for multiple geometries. An optimized high-pressure first turbine stage of a 500 kW microturbine concept using ceramic blades and a titanium cooling ring in an ICT configuration is presented. Its structural performance (minimum safety factor of 1.4) as well as its cooling losses (2% of turbine stage power) are evaluated. Finally, a 20 kW-scale prototype is tested at 300 m/s and a TIT of 1375 K during 4hrs to demonstrate the viability of the concept. Experiments show that the polymer composite was kept below its maximum safe operating temperature and components show no early signs of degradation.


Sign in / Sign up

Export Citation Format

Share Document