scholarly journals Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides

2000 ◽  
Vol 30 (10) ◽  
pp. 991-997 ◽  
Author(s):  
Zhiqi Liu ◽  
Steven M Valles ◽  
Ke Dong
Insects ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 658-685 ◽  
Author(s):  
Juli Wuliandari ◽  
Siu Lee ◽  
Vanessa White ◽  
Warsito Tantowijoyo ◽  
Ary Hoffmann ◽  
...  

2013 ◽  
Vol 70 (6) ◽  
pp. 889-894 ◽  
Author(s):  
Jan Hubert ◽  
Marta Nesvorna ◽  
Martin Kamler ◽  
Jan Kopecky ◽  
Jan Tyl ◽  
...  

2007 ◽  
Vol 98 (2) ◽  
pp. 183-191 ◽  
Author(s):  
I. Eleftherianos ◽  
S.P. Foster ◽  
M.S. Williamson ◽  
I. Denholm

AbstractRecent advances in the characterisation of insect sodium channel gene sequences have identified a small number of point mutations within the channel protein that are implicated in conferring target-site resistance to pyrethroid insecticides (so-called knockdown resistance or kdr). The L1014F (leucine-to-phenylalanine) mutation located in the centre of segment 6 of the domain II region (IIS6) of the sodium channel (the so-called kdr trait) has been detected in the peach-potato aphid, Myzus persicae (Sulzer), and is considered to be the primary cause of pyrethroid resistance in this species. Here we report on the characterisation of a second mutation, M918T (methione-to-threonine), within the nearby IIS4–S5 intracellular linker (the so-called super-kdr trait) in a field clone also possessing L1014F, with both mutations present in heterozygous form. The resistance phenotype of M. persicae clones possessing various combinations of L1014F and M918T to a wide range of pyrethroids (both Type I and II) was assessed in leaf-dip bioassays and to lambda-cyhalothrin applied at up to ten times the recommended field rate as foliar sprays to aphids feeding on whole plants. Bioassay results demonstrated that presence of both mutations was associated with extreme resistance to all the pyrethroids tested relative to aphids lacking the mutations. Furthermore, this resistance well exceeded that shown by aphids that were homozygous for L1014F but lacking M918T. However, pre-treatment with piperonyl butoxide in the leaf-dip bioassays failed to suppress pyrethroid resistance in aphids carrying one or both of the mutations. The relevance of these findings for monitoring and managing pyrethroid resistance in M. persicae populations in the field is discussed.


Sign in / Sign up

Export Citation Format

Share Document