gene locus
Recently Published Documents


TOTAL DOCUMENTS

1400
(FIVE YEARS 123)

H-INDEX

80
(FIVE YEARS 5)

Author(s):  
Manoj B. Menon ◽  
Tatiana Yakovleva ◽  
Natalia Ronkina ◽  
Abdulhadi Suwandi ◽  
Ivan Odak ◽  
...  

By crossing septin7-floxed mice with Lyz2-Cre mice carrying the Cre recombinase inserted in the Lysozyme-M (Lyz2) gene locus we aimed the specific deletion of septin7 in myeloid cells, such as monocytes, macrophages and granulocytes. Septin7flox/flox:Lyz2-Cre mice show no alterations in the myeloid compartment. Septin7-deleted macrophages (BMDMs) were isolated and analyzed. The lack of Septin7 expression was confirmed and a constitutive double-nucleation was detected in Septin7-deficient BMDMs indicating a defect in macrophage cytokinesis. However, phagocytic function of macrophages as judged by uptake of labelled E. coli particles and LPS-stimulated macrophage activation as judged by induction of TNF mRNA expression and TNF secretion were not compromised. In addition to myeloid cells, Lyz2-Cre is also active in type II pneumocytes (AT2 cells). We monitored lung adenocarcinoma formation in these mice by crossing them with the conditional knock-in Kras-LSL-G12D allele. Interestingly, we found that control mice without septin7 depletion die after 3–5 weeks, while the Septin7-deficient animals survived 11 weeks or even longer. Control mice sacrificed in the age of 4 weeks display a bronchiolo-alveolar hyperplasia with multiple adenomas, whereas the Septin7-deficient animals of the same age are normal or show only a weak multifocal brochiolo-alveolar hyperplasia. Our findings indicate an essential role of Septin7 in macrophage cytokinesis but not in macrophage function. Furthermore, septin7 seems absolutely essential for oncogenic Kras-driven lung tumorigenesis making it a potential target for anti-tumor interventions.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3589
Author(s):  
Yasser Morsy ◽  
Nathalie Brillant ◽  
Yannick Franc ◽  
Michael Scharl ◽  
Marcin Wawrzyniak ◽  
...  

Background: The single nucleotide polymorphism (SNP) rs1042058 within the gene locus encoding tumor progression locus 2 (TPL2) has been recently identified as a risk gene for inflammatory bowel disease (IBD). TPL2 has been shown to regulate pro-inflammatory signaling and cytokine secretion, while inhibition of TPL2 decreases intestinal inflammation in vivo. However, the clinical and molecular implications of this disease-associated TPL2 variation in IBD patients have not yet been studied. Methods: We analyzed the impact of the IBD-associated TPL2 variation using clinical data of 2145 genotyped patients from the Swiss IBD Cohort Study (SIBDCS). Furthermore, we assessed the molecular consequences of the TPL2 variation in ulcerative colitis (UC) and Crohn’s disease (CD) patients by real-time PCR and multiplex ELISA of colon biopsies or serum, respectively. Results: We found that presence of the SNP rs1042058 within the TPL2 gene locus results in significantly higher numbers of CD patients suffering from peripheral arthritis. In contrast, UC patients carrying this variant feature a lower risk for intestinal surgery. On a molecular level, the presence of the rs1042058 (GG) IBD-risk polymorphism in TPL2 was associated with decreased mRNA levels of IL-10 in CD patients and decreased levels of IL-18 in the intestine of UC patients. Conclusions: Our data suggest that the presence of the IBD-associated TPL2 variation might indicate a more severe disease course in CD patients. These results reveal a potential therapeutic target and demonstrate the relevance of the IBD-associated TPL2 SNP as a predictive biomarker in IBD.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1964
Author(s):  
Anna Letko ◽  
Katie M. Minor ◽  
Elaine M. Norton ◽  
Voichita D. Marinescu ◽  
Michaela Drögemüller ◽  
...  

Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1–13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10−4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA.


Author(s):  
Miki Higashi ◽  
Tsuyoshi Ikehara ◽  
Takeya Nakagawa ◽  
Mitsuhiro Yoneda ◽  
Naoko Hattori ◽  
...  

Abstract The five β-like globin genes (ε, Gγ, Aγ, δ, and β) at the human β-globin gene locus are known to be expressed at specific developmental stages, although details of the underlying mechanism remain to be uncovered. Here we used an in vitro transcription assay to clarify the mechanisms that control this gene expression. We first tested nuclear RNA from HeLa cells using RT-qPCR and discovered a long noncoding RNAs (lncRNAs) within a 5.2-kb region beginning 4.4 kb downstream of the β-globin gene coding region. We investigated nuclear RNA from K562 cells using a primer-extension assay and determined the transcription start sites (TSSs) of these lncRNAs. To clarify their functional role, we performed knockdown (KD) of these lncRNAs in K562 cells. Hydroxyurea, which induces differentiation of K562 cells, increased hemoglobin peptide production, and the effect was enhanced by KD of these lncRNAs, which also enhanced upregulation of the γ-globin expression induced by hydroxyurea. To confirm these results, we performed an in vitro transcription assay. Noncoding single-stranded RNAs inhibited β-globin expression, which was upregulated by GATA1. Furthermore, lncRNAs interacted with GATA1 without sequence specificity and inhibited its binding to its target DNA response element in vitro. Our results suggest that lncRNAs downstream of the β-globin gene locus are key factors regulating globin gene ex pression.


Author(s):  
Hasnat A Amin ◽  
Heather J Cordell ◽  
Carmen Martin-Ruiz ◽  
Louise Robinson ◽  
Tom Kirkwood ◽  
...  

Abstract The demographics of Western populations are changing, with an increase in the proportion of older adults. There is evidence to suggest that genetic factors may influence the ageing process: studying these may lead to interventions to help individuals live a longer and healthier life. Evidence from several groups indicates that Klotho (KL), a gene encoding a single-pass transmembrane protein that acts as an FGF23 co-receptor, may be associated with longevity and healthy ageing. We aimed to explore this area further by comparing the genotype counts in 642 long-lived individuals from the Newcastle 85 Plus study with 18,295 middle-aged Newcastle-based controls from the UK Biobank to test whether variants at the KL gene locus are over- or under-represented in older individuals. If KL is associated with longevity, then we would expect the genotype counts to differ between the two cohorts. We found that the rs2283368 CC genotype and the rs9536338 C allele, but not the KL-VS haplotype, were associated with reaching very old age. However, these associations did not replicate in the remainder of the UK Biobank cohort. Thus, our results do not reliably support the role of KL as a longevity factor.


2021 ◽  
pp. 101443
Author(s):  
Saumya Madushani Samarasinghe ◽  
Tharmini Sundralingam ◽  
Asanka Sudeshini Hewage ◽  
K.S.H. de Silva ◽  
Kamani Hemamala Tennekoon

2021 ◽  
Author(s):  
Soodabeh Sarafrazi ◽  
Sean C. Daugherty ◽  
Nicole Miller ◽  
Patrick Boada ◽  
Thomas O. Carpenter ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12352
Author(s):  
John Wesley Pike ◽  
Mark B. Meyer

Recent studies of transcription have revealed an advanced set of overarching principles that govern vitamin D action on a genome-wide scale. These tenets of vitamin D transcription have emerged as a result of the application of now well-established techniques of chromatin immunoprecipitation coupled to next-generation DNA sequencing that have now been linked directly to CRISPR-Cas9 genomic editing in culture cells and in mouse tissues in vivo. Accordingly, these techniques have established that the vitamin D hormone modulates sets of cell-type specific genes via an initial action that involves rapid binding of the VDR–ligand complex to multiple enhancer elements at open chromatin sites that drive the expression of individual genes. Importantly, a sequential set of downstream events follows this initial binding that results in rapid histone acetylation at these sites, the recruitment of additional histone modifiers across the gene locus, and in many cases, the appearance of H3K36me3 and RNA polymerase II across gene bodies. The measured recruitment of these factors and/or activities and their presence at specific regions in the gene locus correlate with the emerging presence of cognate transcripts, thereby highlighting sequential molecular events that occur during activation of most genes both in vitro and in vivo. These features provide a novel approach to the study of vitamin D analogs and their actions in vivo and suggest that they can be used for synthetic compound evaluation and to select for novel tissue- and gene-specific features. This may be particularly useful for ligand activation of nuclear receptors given the targeting of these factors directly to genetic sites in the nucleus.


2021 ◽  
Author(s):  
Ajay S. Labade ◽  
Adwait Salvi ◽  
Saswati Kar ◽  
Krishanpal Karmodiya ◽  
Kundan Sengupta

Nucleoporins regulate nuclear transport and are also involved in DNA damage, repair, cell cycle, chromatin organization, and gene expression. Here, we studied the role of nucleoporin Nup93 and the chromatin organizer CTCF in regulating HOXA expression during differentiation. ChIP sequencing revealed a significant overlap between Nup93 and CTCF peaks. Interestingly, Nup93 and CTCF are associated with the 3' and 5′HOXA genes respectively. Depletions of Nup93 and CTCF antagonistically modulate expression levels of 3′and 5′HOXA genes in undifferentiated NT2/D1 cells. Nup93 also regulates the localization of the HOXA gene locus, which disengages from the nuclear periphery upon Nup93 but not CTCF depletion, consistent with its upregulation. The dynamic association of Nup93 and CTCF with the HOXA locus during differentiation correlates with its spatial positioning and expression. While Nup93 tethers the HOXA locus to the nuclear periphery, CTCF potentially regulates looping of the HOXA gene cluster in a temporal manner. In summary, Nup93 and CTCF complement one another in modulating the spatiotemporal dynamics and function of the HOXA gene locus during differentiation.


Sign in / Sign up

Export Citation Format

Share Document